Magnetic Contactors and Magnetic Starters

Exceed your expectations

Mitsubishi's Magnetic Contactors and Magnetic Starters, continuously pushing the boundaries.

Mitsubishi's Magnetic Contactors and Magnetic Starters continue to

 push the boundaries.MS-A Series Double ratings of AC3 grade (Green) and AC4 grade (Red) were adopted allowing the unit to be downsized.

Mitsubishi Electric began making Magnetic Contactors and Magnetic Starters in 1933 with the first EC Series products. Since then consecutive new products and series have been highly appreciated by our customers. Our commitment to our customers remains to continuously develop our products to exceed their expectations.

US-N Series was released. Sales of Magnetic Starters exceeded 100 million units.

MS-T Series is released.
The Motor Circuit Breaker was released.

The 80th anniversary
$2012 \quad 2013$

MS-N Series
The ground breaking "CAN terminal" proved to be an epoch making step in the design of Magnetic Contactors.

MS-K Series
Lower power consumption was achieved through the use of AC operating, DC excited electromagnets.

Meeting your needs	4
MS-T Series Introduction	6
- Features of MS-T Series — List of Produced Models	
Selection and Application	14
- About Handling	14
- Specification List Table	
- Coordination with short-circuit protective devices	
- Electrical Durability Curve	22
- Coil Ratings	22
-Contact Reliability ..	23
Application to Thermal Overload Relays	24
- Selection Table	
- Precautions for Use	26
- Operating Characteristic of Thermal Overload Relays.	
Product Introduction	30
- Magnetic Starters.	
- Magnetic Contactors ...	
-Thermal Overload Relays	
- Contactor Relays	34
- Optional Units	36
Overseas Standard	42
Type Codes	50
Order Procedure	52
Outline Drawing	54
Warranty and Safety	76
Information of Our FA-related Products	78

Desire to reduce the types and stock of switchboard parts

Desire to prevent accidents such as electric shock

Do these requirements sound familiar?

The new MS-T Series can help you solve these issues.

Down-sizing

10A frame model is over 16% smaller with a width of just 36 mm !!

There is a saying that "every bit helps" and now with the industries smallest* general purpose Magnetic Contactor in its class, customers are able to more easily down-size their boards than ever before.
For AC-operated 10A frame class general-purpose Magnetic Contactor (based on survey conducted by Mitsubishi dated September 2015)
Example: Status where 5 units are arranged

(For mounting details, please refer to "mounting on Page 14.)

The optimized high-temperature gas

S-T50 (actual size)
<AC operated type>

<DC operated type>

Front view		35A	50A	65A	80A	100A
Traditional SD-N Series	Front view					
New slimline SD-T Series	Front view					

Standardization

New integrated terminal covers Taget tane: :10At 5 SoA fame

The perennial issues of remembering to order the terminal covers, fitting them correctly or loosing them in the process are challenges of the past. The integrated terminal cover system means they are always there, on the Magnetic Contactor or its Auxiliary contact, ready to be used.

Reduce your coil inventory by up to 50\%

Target frame : 10A to 35A frame
The 14 types of operation coil ratings available with the SN Series have been halved to 8 types with that increasing the applicable voltage range. Users can reduce their inventory, and by integrating the types of coils manufactured, a shorter delivery can be realized.

Coil designation	Rated voltage V$]$	
	50 Hz	60 Hz
AC24V	12	12
AC48V	24	24
AC100V	$48-50$	$48-50$
AC120V	100	$100-110$
AC127V	$125-120$	$115-120$
AC200V	200	127
AC220V	$208-220$	$200-220$
AC230V	$220-240$	220
AC260V	$240-260$	$230-240$
AC380V	$346-380$	$360-280$
AC400V	$380-415$	$400-440$
AC440V	$415-440$	$460-480$
AC500V	500	$500-550$

Coil designation
AC12V
Rated voltage $[\mathrm{V}$]
AC24V
AC48V
AC100V
AC200V
AC300V
AC400V
AC500V

By integrating the electromagnetic field analysis and drive analysis, inconsistency in the electromagnetic attraction force is suppressed and rise of the coil temperature is reduced.

OFF state

When AC150V 60 Hz is applied on AC200V coil

Capable of direct drive with transistor output of PLC, etc
The adopted high-efficiency polarized electromagnet greatly reduces the coil power consumption, and enables all models to be directly driven with a $\mathrm{DC} 24 \mathrm{~V}, 0.1 \mathrm{~A}$ rating transistor output. (DC24V coil)

	Conventional Model	New Model	Lowering Rate
$\left(\begin{array}{c}13 A \\ \text { (Coil:DC12/24V) }\end{array}\right.$	7 W	2.2 W	69%
20 A Frame $($ Coil:DC12/24V)	9 W	2.2 W	76%
32 A Frame $($ Coil:DC12/24V) $)$	-	2.2 W	-
*DC48V to $220 \mathrm{~V} \cdot 3.3 \mathrm{~W}$			

*DC48V to 220V:3.3W

ON state

Safety \& Quality

Terminal cover with finger protection function

In addition to the Magnetic Contactor, a terminal cover has been provided as a standard for the thermal, magnetic relay and auxiliary contact unit options. This realizes a finger protection function that complies with the DIN and VDE Standards, prevents electric shocks, and increases safety during maintenance and inspections.
[Finger Protection]
In the provisions regarding worker safety and accident protection during use of low-voltage switchgear and controlgear assemblies set forth with DIN EN 50274/VDE 0660 Teil 514, the range for providing protection against contact of live sections is divided
 into "Finger Safe (preventing finger contact)" and "Back of hand safe (protecting back of hand contact), and standards are provided. The MS-T Series terminal cover satisfies the requirements of these provisions.

A light touch

Target frame: All S-T Series
The MS-T Series' auxiliary contacts can operate with load as light as 20V 3mA making it suitable for direct control/operation from a PLC output.

Smart wiring

Smart design means Smart wiring

The integrated terminal covers have an additional benefit in that they act as a guide to improve wiring efficiency but also retain the terminal screw in place: no mislaying the screw, no dropping it or having trouble reinserting it in to the terminal block just fast efficient wiring. Fast wiring terminals (model name with suffix "BC") are also available to further improve wiring efficiency, workability and hence productivity.

(1) Screw holder lifts up the screw.

(2) Insert a ring crimp lug

(3) Tighten the screw

Easy branch circuit wiring with Motor Circuit Breaker and optional connection conductor unit

```
Target frame : 10A to 32A frames
```

Easy wiring is available for the new MS-T Series by using the Motor Circuit Breaker and optional connection conductor unit, contributing your productivity improvement.

Global Standard

Complies with main International Standards

In addition to compliance with the main International Standards including IEC, JIS, UL, CE, and CCC, we plan to acquire compliance with Shipping Standards and other International Standards.
We hope to contribute to your business expansions overseas.

Standards	Applicable standard					Saiety certification standard	
	International	Japan	European countries		China	U.S. \& Canada	
	$\mathrm{IEC}^{\mathrm{Nobe}}$	$J \\|$	EN	Certificate authority	GB	$c\left(U_{0}\right) \text { US }$	
			EC directive				
			$\square \square$		(cc)		

Note : Also compliant with the requirements for mirror contacts comply with IEC60947-4-1 Annex F.

Higher SCCR value achieved by using with Motor Circuit Breaker

When the MMP-T Series and the MS-T Series are used together, the higher SCCR (UL short-circuit current rating) value, can be achieved. That will be a great support for your business in North America.

* Refer to page 47 for the SCCR values for the Magnetic Contactor and Thermal Overload Relays. For details on the SCCR value when used in combination with the Motor Circuit Breaker, refer to the Motor Circuit Breaker catalog.

List of Produced Models

Magnetic Starters/Magnetic Contactors ${ }_{\text {(NonReversing) }}$

Frame																						
				T10	T12	T20	T21	T25	T32	T35	T50	T65	T80	T100	N125	N150	N180	N220	N300	N400	N600	N800
	Category AC-3 Rated capacity [kW]		220V	2.2	2.7	3.7	$\left\lvert\, \begin{array}{c\|} \hline 4 \\ \mid(3.7) \end{array}\right.$	5.5	7.5	7.5	11	15	19	22	30	37	45	55	75	110	160	200
			W] 440 V	2.7	4	7.5	7.5	11	15	15	22	30	37	45	60	75	90	110	150	200	300	400
	Auxiliary contact (Note 6)			1 a	1a1b	1a1b	$\leqslant 2 \mathrm{a}$	$2 \mathrm{~b} \rightarrow$	-						22							
				1b	2 a	2a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Standard Specifications	MS- \square	\bigcirc	\bigcirc	-	\bigcirc	-	-	\bigcirc	-	-										
		With push button	MS- $\square \mathrm{PM}$	\bigcirc	\bigcirc	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-
		3-element (2E) thermal	MS- $\square \mathrm{KP}$	\bigcirc	\bigcirc	-	\bigcirc	-	-	\bigcirc	-	-										
		Open time quick motion type	MS- $\square \mathrm{QM}$	-	-	-	-	-	-	-	-	\bigcirc	-	-								
	$\begin{aligned} & \stackrel{\circ}{2} \\ & \underset{\sim}{2} \\ & \stackrel{\otimes}{O} \end{aligned}$	Standard specifications	MSO- \square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-										
			MSOD- \square	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
		3-element (2E) thermal	MSO- $\square \mathrm{KP}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-										
			MSOD- $\square \mathrm{KP}$	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
		With saturable reactor	MSO- \square SR	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-										
			MSOD- \square SR	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
		3-element (2E) thermal With saturable reactor	MSO- $\square \mathrm{KPSR}$	-	-	-	\bigcirc	\bigcirc	-	\bigcirc	-	-										
			MSOD- $\square \mathrm{KPSR}$	-	-	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
		2-element Quick-acting characteristics thermal	MSO- $\square \mathrm{FS}$	-	-	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-
			MSOD- \square FS	-	-	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-
		-	MSO- \square FSKP	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-
			MSOD- \square FSKP	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-
		3-element (2E) Quick-acting characteristics themal	MSO- $\square \mathrm{KF}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Opentimequick motiontype	MSO- $\square \mathrm{QM}$	-	-	-	-	-	-	-	-	\bigcirc	-	-								
		Surge absorber	MSO- \square SA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
		mounted type	MSOD- \square SA	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
			MSO- \square BC	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
		streamlining terminal	MSOD- $\square \mathrm{BC}$	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
		Anticorrosion treatment	MSO- $\square \mathrm{YS}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-										
			MSOD- $\square \mathrm{YS}$	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
		Delay open type	MSO- \square DL	-	\bigcirc	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-
		Mechanically	MSOL- \square	-	-	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
		latched type	MSOLD- \square	-	-	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
		With terminal cover	MSO- \square CW	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-
	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\circ}{2} \\ & \stackrel{\rightharpoonup}{\mathrm{D}} \\ & \stackrel{\circ}{\circ} \end{aligned}$	Standard specifications	S- \square	\bigcirc																		
			SD- \square	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc							
		Surge absorber mounted type	S- \square SA(Note3)	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-						
			SD- \square SA	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-
		Anticorrosion treatment	S- $\square \mathrm{YS}$	-	-	-	-	-	-	\bigcirc												
		Open timequick motion type	S- \square QM	-	-	-	-	-	-	-	-	\bigcirc	-	-								
		Wiring streamlining terminal	S- $\square \mathrm{BC}$	\bigcirc	-	-	-	-	-	-	-	-	-	-	-							
			SD- $\square \mathrm{BC}$	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
		With terminal cover	S- $\square \mathrm{CW}$	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-
		Delay open type	S- $\square \mathrm{DL}$	-	\bigcirc	-	\bigcirc	-	-	*	*	*	*	*	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-
		Mechanically latched type	SL- \square	-	-	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc						
			SLD- \square	-	-	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc						
		Class 2 heat resistance	S- \square FN	-	\bigcirc	-	\bigcirc	-	-	*	*	-	*	*	-	\bigcirc	-	-	-	\bigcirc	-	-
		Class 2 heat resistance Mechanically latched type	SL-T \square FN	-	-	-	\bigcirc	-	-	-	*	-	*	*	-	\bigcirc	-	-	-	\bigcirc	-	-
			SLD-T \square FN	-	-	-	\bigcirc	-	-	-	*	-	*	*	-	\bigcirc	-	-	-	\bigcirc	-	-

List of Produced Models

Magnetic Starters/Magnetic Contactors

Frame					$\begin{array}{\|} 2 x \\ 110 \end{array}$	$\begin{array}{\|l\|} 2 \times \\ T 12 \end{array}$	$\begin{array}{\|l\|} \hline 2 \times \\ \hline 120 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 x \\ 121 \end{array}$	$\begin{array}{\|c\|} \hline 2 x \\ 125 \end{array}$	$\begin{array}{\|c\|} \hline 2 x \\ 132 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2 \times \\ 135 \end{array}$	$\begin{array}{\|c\|} \hline 2 \times \\ 150 \end{array}$	$\begin{array}{\|c\|} \hline 2 x \\ 165 \end{array}$	$\begin{array}{\|l\|} \hline 2 \times 1 \\ \hline 180 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \mathrm{X} \\ \mathrm{~T} 100 \\ \hline \end{array}$	$\left\|\begin{array}{c} 2 \mathrm{X} \\ \mathrm{~N} 125 \end{array}\right\|$	$\left\lvert\, \begin{array}{\|c\|} 2 \times \\ N 150 \end{array}\right.$	$\begin{array}{\|c\|} \hline 2 \times \\ \text { N180 } \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \hline 2 x \\ \text { N220 } \end{array} \right\rvert\,$	$\left\|\begin{array}{\|c\|} 2 x \\ \text { N300 } \end{array}\right\|$	$\begin{array}{\|c\|} \hline 2 \mathrm{~N} \\ \mathrm{~N} 400 \end{array}$	$\left\|\begin{array}{\|c\|} \hline 2 \times \\ N 600 \end{array}\right\|$	$\begin{array}{\|c\|} \hline 2 \times \\ \text { N800 } \end{array}$
Category AC-3 Rated capacity [kW]				220 V	2.2	2.7	3.7	4	5.5	7.5	7.5	11	15	19	22	30	37	45	55	75	110	160	200
				440V	2.7	4	7.5	7.5	11	15	15	22	30	37	45	60	75	90	110	150	200	300	400
Auxiliary contact ame (Notes 4 to 6)				Standard	$\begin{gathered} (1 a \times 2 \\ +2 b \end{gathered}$																	$\rightarrow 4 a 4 b \times 2 \rightarrow$	
				Special	$\begin{gathered} (16 v \times 2 \\ \hline(1 b 20 \\ +2 b \end{gathered}$	$(2 a \times 2)+2 \mathrm{~b}$		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Standard specifications	MS- \square		-	-	-	\bigcirc	-	-	\bigcirc	0	0										
	國	3-element (2E) thermal	MS- $\square \mathrm{KP}$		-	-	-	\bigcirc	-	-	\bigcirc	-	-										
		Standard specifications	MSO-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-										
			MSOD-L		-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
		3-element (2E) thermal	MSO- $\square \mathrm{KP}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-										
			MSOD- $\square \mathrm{KP}$		-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
		With saturable reactor	MSO- \square SR		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-										
			MSOD- \square SR		-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
		3-element (2E) therma With saturable reactor	$\text { MSO- } \square \mathrm{KPSR}$		-	-	-	\bigcirc	\bigcirc	-	\bigcirc	-	-										
			$\text { MSOD- } \square \mathrm{KPSR}$		-	-	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
		2-element Quick-acting	MSO- \square FS		-	-	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-
	2	characteristics thermal	MSOD- \square FS		-	-	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-
	\mid	3-lelement (2E) Quick-acting	MSO- \square FSKP		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-
	¢	characteristics thermal	MSOD- \square FSKP		-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-	
	\bigcirc	3.element (2E) Quick-acting characteristis themmal	MSO- $\square \mathrm{KF}$		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Surge absorber	MSO- \square SA		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
		mounted type	MSOD- \square SA		-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
		Wiring streamlining	MSO- $\square \mathrm{BC}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
			MSOD- $\square \mathrm{BC}$		-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
		With terminal cover	MSO- $\square \mathrm{CW}$		-	-	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-
		Anticorrosi	MSO- $\square \mathrm{YS}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-										
		treatment	MSOD- $\square \mathrm{YS}$		-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
		Mechanically	MSOL- \square		-	-	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
		latched type	MSOLD- \square		-	-	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-						
	$\begin{aligned} & 0.0 \\ & \stackrel{\circ}{2} \\ & \stackrel{\rightharpoonup}{\overline{0}} \\ & \stackrel{0}{\circ} \end{aligned}$	Standard specifications	S-[\bigcirc																		
			SD- \square		-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc							
		Surge absorber mounted type	S- \square SA(Note3)		\bigcirc	-	-	-	-	-	-	-	-	-	-	-							
			SD- \square SA		-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
		Anticorrosion treatment	S- $\square \mathrm{YS}$		-	-	-	-	-	-	\bigcirc												
		Wiring streamlining terminal	S- $\square \mathrm{BC}$		\bigcirc	-	-	-	-	-	-	-		-									
			SD- $\square \mathrm{BC}$		-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
		With terminal cover	S- \square CW		-	-	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-
		Mechanically	SL- \square		-	-	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc						
		latched type	SLD- \square		-	-	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc						
		Class 2 heat resistance	S- $\square \mathrm{FN}$		-	\bigcirc	-	\bigcirc	-	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	-	-		\bigcirc	-	-
		With reversible	S- \square SD		\bigcirc																		
		conductor (Doth power supply and load side)	SD- \square SD		-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc							
			S- \square SG		\bigcirc																		
		power supply side with crossover conductor	SD- \square SG		-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc							
		3 -pole common on pad side with	S- \square SX		\bigcirc																		
		load side with crossover conductor	SD- $\square \mathrm{SX}$		-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc							
			S- \square SF		\bigcirc																		
		switch on load side with crossover conductor			-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc							
Note 1: -indicates out of manufacturing range, and * indicates to be released soon. Note 2: The value given in brackets for the Class AC-3 rated capacity applies to the enclosed Magnetic Starter. Note 3: The T65 to N800 type AC operation coils are a surge absorber-installed type so the coil does not generate an open/close surge. Therefore, the surge absorber for coils is not required. Note 4: The +2 b for the T10 to T20 auxiliary contact arrangements in the Reversing type represents the b contact built into the UT-ML11 interlock unit. This does not need to be specified when ordering. Note 5: For the auxiliary contact arrangement in the reversing type, the auxiliary contact arrangement																							

Thermal Overload Relays

Frame		T18	T25	T50	T65	T100	N120	N120TA	N220	N400	N600
Heater designation (Standard specifications)		0.12 to 15	0.24 to 22	24 to 50	12 to 65	54 to 100	42 to 82	105 to 125	82 to 180	105 to 330	250 to 660
	Standard specifications TH- \square	\bigcirc									
	With saturable reactor TH- \square SR	\bigcirc									
	2-element Quick-acting TH- \square FS characteristics thermal	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-
	$\begin{array}{\|ll} \begin{array}{l} \text { 3-element (2E) } \\ \text { thermal } \end{array} & \text { TH- }-\mathrm{KP} \\ \hline \end{array}$	\bigcirc									
	$\begin{aligned} & \text { 3-element (2E) therma TH- } \square \text { KPSR } \\ & \text { With saturable reactor } \end{aligned}$	-	\bigcirc								
	3-element (2E) Quick-acting TH-पFSKP	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-
	characteristics thermal TH- $\square \mathrm{KF}$	-	-	-	-	-	-	-	-	-	-
	With terminal cover TH- $\square \mathrm{CW}$	-	-	-	\bigcirc	-	-	-	-	-	-
	Wiring streamlining $\mathrm{TH}-\square \mathrm{BC}$ terminal	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
	$\begin{array}{\|ll} \text { Anticorrosion } \\ \text { treatment } \end{array} \quad \text { TH- } \square Y S$	\bigcirc									

Note 1: -indicates out of manufacturing range.
Contactor Relays

Frame		T5	T9
Number of contact		5	9
Contact arrangement		5 a	9 a
		4a1b	7a2b
		3a2b	5a4b
Standard	SR- \square	\bigcirc	\bigcirc
DC operated type	SRD- \square	\bigcirc	\bigcirc
Mechanically latched type	SRL- \square	\bigcirc	-
	SRLD- \square	\bigcirc	-
With large rated auxiliary contacts	SR- \square JH	\bigcirc	\bigcirc
	SRD- \square JH	\bigcirc	\bigcirc
With overlap contact	SR- \square LC	\bigcirc	\bigcirc
	SRD- \square LC	\bigcirc	\bigcirc
Delay open type	SR- \square DL	\bigcirc	\bigcirc
With fast wiring terminal	SR- $\square \mathrm{BC}$	\bigcirc	\bigcirc
	SRD- \square BC	\bigcirc	\bigcirc
With terminal cover	SR- \square CX	-	-
	SRD- \square CX	-	-
With surge absorber	SR- \square SA	\bigcirc	\bigcirc
	SRD- \square SA	\bigcirc	\bigcirc

Note 1: -indicates out of manufacturing range.
Note 2: Refer to the individual rating table for the contact rating when using a type with large capacity contact or type with overlap contact. The value given in brackets is the value for switching the load with two poles installed in a series.
3: When using the mechanically latched type (SRL-
mounted on the opening coil and closing coil.
Note 4: Only the side-on auxiliary contact unit UT-AX11 can be mounted on the mechanically latched type SRL-T5 or SRLD-T5. Only UN-AX11 can be mounted on SRL-N4 or SRLD-N4.
Note 5: Both the surge absorber unit and DC/AC interface unit cannot be additionally mounted onto the Contactor Relay's coil terminal.
Note 6: Alive section protection cover is provided as a standard.
Note 7: The minimum applicable load level for the contacts at the SR(D)-T9 head-on section (four terminals on upper level) is the same as UT-AX2/4.

Selection and Application

About Handling

Note

Precautions for Use

© Be sure to periodically check the Magnetic Starters and apply danger prevention measures on the sequence of important circuits. (The Magnetic Starters contacts may suffer from defective continuity, welding, and burning.)
© When performing installation, wiring, and maintenance \& inspection, be sure to disconnect the Magnetic Starters from the power supply. It may cause electric shock. In addition, the malfunction attributable to vibration, impact, and false wiring may exert serious results (machine malfunction, short-circuiting of power supply, etc.) on the Magnetic Contactors.

Performance

The performance described in this catalog is based on the result of a test conducted under the conditions specified in the Standard (IEC60947-4-1 "Low-voltage switchgear and controller" etc.). If actual use condition is different from this test condition, the user must evaluate the condition (by using an actual device).

OUse condition

Although the device can operate without any problem when under the conditions described in this chapter, be careful about the following matters.
(1) Ambient temperature

Even when the device is used in accordance with normal usage, deterioration of the insulation will progress.
In particular, as the ambient temperature increases, the insulation life is shortened. In general, it is said that every time the ambient temperature increases by 6 to $10^{\circ} \mathrm{C}$, the insulation life decreases by half (Arrhenius law). In a case where the ambient temperature is high and voltage exceeding the rated voltage is continuously applied to coil, the coil temperature increases and life may be shortened dramatically.
(2) Vibration/Impact

Although vibration of $19.6 \mathrm{~m} / \mathrm{s}^{2}$ and impact of $49 \mathrm{~m} / \mathrm{s}^{2}$ do not cause contact malfunction, even when the vibration and impact are below these values but are applied continuously, fatigue failure may cause some trouble.
In particular, please note that the resonance of an installed board may exert a large vibration on the product.

Usage environment

(1) Ambient temperature
$:-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
(Applied to the outside of the control board) Average daily atmospheric temperature: $35^{\circ} \mathrm{C}$ (Max.), Average yearly atmospheric temperature: $25^{\circ} \mathrm{C}$ (Max.)
(2) Maximum temperature of the: $55^{\circ} \mathrm{C}$ However, the ambient temperature of boxed MS type is $40^{\circ} \mathrm{C}$ (Average yearly temperature of the inside of the control board is $40^{\circ} \mathrm{C}$ or less.). inside of the control board Please note that the operating characteristics of the Magnetic Contactors and Thermal Overload Relays may vary with the ambient temperature.
(3) Relative humidity : 45% to 85% RH However, dew condensation and freezing should be avoided.
(4) Height above sea level : 2000 m or less
(5) Vibration
: 10 to $55 \mathrm{~Hz}, 19.6 \mathrm{~m} / \mathrm{s}^{2}$ or less
(6) Impact
: $49 \mathrm{~m} / \mathrm{s}^{2}$ or less
(7) Atmosphere : Inclusion of dust, smoke, corrosive gas, moisture, salt content and the like in the atmosphere should be avoided as much as possible. Please note that continuing to use the device in a closed condition for a long period may cause contact failure. Never use the device under an atmosphere that contains flammable gas.
(8) Storage temperature/Relative humidity : $-30^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C} 45 \%$ to 85% RH However, dew condensation and freezing should be avoided.

The storage temperature is ambient temperature during transportation or storage and should be within the usage temperature when starting to use the device.

Mounting

Direct mounting

(1) The device should be mounted in a dry location low in dust and vibration.
(2) The normal mounting direction is the direction shown in Fig. 1 on a vertical surface, but mounting the device at an inclination angle of up to 30 degrees in either direction is allowed. (Fig. 2)
(3) Mounting the device on a floor or ceiling is not allowed. (Mounting the device on a floor or ceiling may affect the continuity performance, operation performance, and durability of the contact.)
(4) If mounting the device in a horizontal orientation cannot be avoided, be sure to rotate the device by 90 degrees in a counterclockwise direction from the normal mounting direction as shown in figure 3 when mounting it. If the device is mounted in a horizontal orientation, its characteristic is nearly unchanged but mechanical durability may be deteriorated. Horizontal mounting of reversing type is not allowed.

Tightening torque of mounting screw

The device should be mounted by force of tightening torques shown in the right table.

Screw size	Tightening torque of mounting screw $\mathrm{N} \cdot \mathrm{m}$
M4	1.2 to 1.9
M5	2.0 to 3.3

Mounting of IEC 35 mm wide rail

(1) The T10 to T80 types and SR-T type can be mounted on the IEC 35 mm wide rail as a standard.
(2) DIN, EN, IEC, and JIS C2812 standards-compliant 35mm wide rails come in two types: 7.5 mm and 15 mm in rail height. Their shapes and dimensions are as shown in the figure below.

Rail		Rail specifications
1	TH35-7.5	Rail width: 35 mm , Rail height: 7.5 mm
2	TH35-15	Rail width: 35 mm , Rail height: 15 mm

(3) Maximum pitch of rail mounting screw $L(m m)$

When mounting a rail on a surface of the board, be sure to keep the rail mounting screw pitch below the dimension shown in the following table in order to secure sufficient mechanical strength.

Frame	T10, T12, T20, T21, T25, T32, T35, T50, T65, T80	SR(D)-T5, T9
Rail	250	
TH35-7.5	500	
TH35-15	50	

Mounting space and arc space

When mounting the Magnetic Contactors side by side, be sure to keep the devices isolated by a distance longer than the dimension shown in the following table. Also, the Magnetic Contactors and adjacent grounding metal should be isolated by a distance longer than the dimension shown in the following table. The content described in () is applied when additionally mounting auxiliary contacts.
Although an arc space is not required in front of the Magnetic Contactors, providing a space longer than the E dimension shown in the following table is recommended in consideration of variation in the Magnetic Contactor's depth dimension, and vibration caused when turning on or releasing the contactor.

Mounting space and arc space

Frame	Minimum mounting space				Front arc space (Note 1)	Front mounting space E
	$A\left(A_{1}, A_{2}\right)$ dimension [mm]	$B\left(B_{1}, B_{2}\right)$ dimension [mm]	$\begin{gathered} \mathrm{C}\left(\mathrm{C}_{1}\right) \\ \text { dimension } \\ {[\mathrm{mm}]} \end{gathered}$	D dimension $[\mathrm{mm}]$		
T10	$\begin{gathered} 41 \\ \left(A_{1}=53, A_{2}=65\right) \end{gathered}$	$\begin{gathered} 5 \text { Note 2) } \\ \left(\mathrm{B}_{1}=17, \mathrm{~B}_{2}=29\right) \end{gathered}$	$\left(\mathrm{C}_{1}=22\right)$	15	0	$\begin{gathered} 5 \\ (\text { Note 3) } \end{gathered}$
T12	48					
T20	$\left(A_{1}=60, A_{2}=72\right)$					
T21						
T25	$\left(A_{1}=80, A_{2}=92\right)$					
T32	$\begin{gathered} 48 \\ \left(A_{1}=60, A_{2}=72\right) \end{gathered}$					
T35	80	5 (Note 2)	$\begin{gathered} 10 \\ \left(\mathrm{C}_{1}=23.5\right) \end{gathered}$			
T50	$\left(A_{1}=93.5, A_{2}=107\right)$	$\left(\mathrm{B}_{1}=18.5, \mathrm{~B}_{2}=32\right)$				
T65		10 (Note 2)		25		
T80	$\left(A_{1}=111.5, A_{2}=125\right)$	$\left(B_{1}=23.5, B_{2}=37\right)$				5
T100	$\begin{gathered} 110 \\ \left(A_{1}=124, A_{2}=138\right) \end{gathered}$	$\begin{gathered} 10 \\ \left(\mathrm{~B}_{1}=24, \mathrm{~B}_{2}=38\right) \end{gathered}$	$\left(C_{1}=30\right)$			10
SR(D)-T5	$\begin{gathered} 48 \\ \left(A_{1}=60, A_{2}=72\right) \end{gathered}$	$\begin{aligned} & 5 \text { (Note 2) } \\ & \left(\mathrm{B}_{1}=17, \mathrm{~B}_{2}=29\right) \end{aligned}$	$\begin{gathered} 10 \\ \left(C_{1}=22\right) \end{gathered}$	15		$\begin{gathered} 5 \\ \text { (Note 3) } \end{gathered}$
SR(D)-T9	48	5 (Note 2)	10			3

Note 1. The value of this arc space is a value of IEC and JIS Standards-based closed circuit shut-off capacity test. Note 2. Although the B dimension of T10 to T32 allows closely-attached mounting, when continuing to apply current to the device or when mounting a product high in open/close frequency and high utilization on the same rail, the device life may be shortened in terms of temperature increase and impact, so please keep the space between the devices over the minimum value shown in the above table as much as possible when mounting them.
Note 3. Edimension is 3 mm when mounting UT-AX2 or UT-AX4 with contactors.

Note

Connection

Applicable electric wire size and tightening torque and terminal dimension of terminal screw
\This may cause overheating or fire. Be sure to properly keep the tightening torque and periodically re-tighten the screw.
However, please note that tightening the screw under the status where oil is adhered to the terminal portion may damage the terminal screw even within the existing tightening torque.
Electric wires should be properly connected according to the electric wiring diagram. Tightening the terminal screw should be properly conducted within the tightening torque shown in the right table. Insufficient tightening of the terminal screw may cause overheating or cause the electric wire to drop off. Excessive tightening torque may damage the tightening screw. Adhesion of rock paint, thermo label, etc. to electric wire connection or contact may cause heat generation due to defective continuity, so this is very dangerous.
The main circuit terminals for the T10 to T50 and TH-T18 to T50 types can be wired connected by single wire, stranded wire or crimp lug. The main circuit terminals and operating circuit terminals of the T10 to T50 and TH-T18 to T50 types are self-lifting terminals that are easy to connect.

Model	Terminal dimension and size/type of screw				Applicable electric wire size [$\phi \mathrm{mm}, \mathrm{mmin}$]		Connection conductor thickness (D) [mm]	Applicable crimp lug size (JST Cat No.)		Tightening torque of terminal screw[N•m] Reference values are given in brackets.	
Standard type Contactor Relays Magnetic Contactors Thermal Overload Relays (Note 1)	Main circuit			Operating circuit							
	Dimension of terminal portion AxBxC [mm] (Note 2)	$\begin{gathered} \text { Screw } \\ \text { size } \end{gathered}$	Screw type	cross slot screw with pressure plate	Main circuit	Operating circuit	Main circuit (Note 2)	Main circuit	Operaing circuit	Main circuit	Operating circuit
SR-T5, T9	-	-	-	M 3.5×7.6	-	$\begin{gathered} \phi 1.6 \\ 0.75 \text { to } 2.5 \end{gathered}$	-	-	$\begin{aligned} & 1.25-3.5 \\ & \text { to } 2-3.5 \end{aligned}$	-	0.9 to 1.5
S-T10, T12, T20	$7.5 \times 3.7 \times 4.5$	M3.5x7. 6	cross slotScrewwithpressureplate	M3.5×7.6	$\begin{gathered} \phi 1.6 \\ 0.75 \text { to } 2.5 \end{gathered}$		1.6	$\begin{array}{\|c\|} \hline 1.25-3.5 \mathrm{to} \\ 2-3.5 \\ 5.5-53 \\ \hline \end{array}$		0.9 to 1.5	
S-T21, T25, T32	$10.5 \times 5.2 \times 5.5$	M4x10.5		M3.5×7.6	$\begin{aligned} & \phi 1.6 \text { to } 2.6 \\ & 1.25 \text { to } 6 \end{aligned}$		3	$\begin{gathered} 1.25-4 \text { to } \\ 5.5-4 \end{gathered}$		1.2 to 1.9	
S-T35, T50	$13.3 \times 5.5 \times 6.9$	M5x14.8		M3.5×7.6	$\begin{aligned} & \phi 1.6 \text { to } 3.6 \\ & 1.25 \text { to } 16 \end{aligned}$		6	$\begin{gathered} 1.25-5 \text { to } \\ 14-5 \\ 22-S 5 \end{gathered}$		2.0 to 3.3	
S-T65, T80	$15 \times 7 \times 8.5$	M6x12	crosshead/ slottedhead screw	$\mathrm{M} 4 \times 10$	(2 to 22)		3.7	$\begin{gathered} 1.25-6 \text { to } \\ 22-6 \\ 38-56 \\ 60-\mathrm{S} 6 \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} 1.25-4 \text { to } \\ 2-4 \\ 5.5-\mathrm{S} 4 \end{gathered}\right.$	3.5 to 5.7	1.2 to 1.9
S-T100	$15 \times 7.5 \times 11.5$				(2 to 38)		4	$\begin{gathered} 1.25-6 \text { to } \\ 60-6 \end{gathered}$			
$\begin{gathered} \text { TH-T18 } \\ \text { (Load side) } \end{gathered}$	$7.5 \times 4 \times 4$	M3.5x7. 6	cross slotscrewwithpressureplate	M3.5×7.6	$\begin{gathered} \phi 1.6 \\ 0.75 \text { to } 2.5 \end{gathered}$	$\begin{gathered} \phi 1.6 \\ 0.75 \text { to } 2.5 \end{gathered}$	2	$\begin{array}{\|c\|} \hline 1.25-3.5 \mathrm{to} \\ 2-3.5 \\ 5.5-\mathrm{S} 3 \\ \hline \end{array}$	$\left\|\begin{array}{c} 1.25-3.5 \\ \text { to } 2-3.5 \end{array}\right\|$	0.9 to 1.5	0.9 to 1.5
TH-T25 (Power side/Load side)	$\begin{aligned} & 10.2 \times 6.8 \times 5 / \\ & 10.2 \times 5.7 \times 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline M 4 \times 10.5 / \\ & M 4 \times 10.5 \\ & \hline \end{aligned}$			$\begin{array}{\|c\|} \hline 1.6 \text { to } 2.6 \\ 1.25 \text { to } 6 \\ \hline \end{array}$		2.5	$\begin{gathered} 1.25-4 \text { to } \\ 5.5-4 \end{gathered}$		1.2 to 1.9	
$\begin{aligned} & \text { TH-T50 } \\ & \text { (Load side) } \end{aligned}$	$13.3 \times 5.8 \times 6.9$	M5x14.8			$\begin{aligned} & \phi 2 \text { to } 3.6 \\ & 4 \text { to } 14 \\ & \hline \end{aligned}$		8	$\begin{aligned} & 5.5-5 \text { to } \\ & 14-5 \\ & \hline \end{aligned}$		2.0 to 3.3	
TH-T65	$17 \times 7.5 \times 8.5$	M6×12	Crosshead/ slottedhead screw	M4×10	$\begin{gathered} (2 \text { to } 22) \\ \text { Note } 3 \end{gathered}$	$\begin{gathered} \phi 1.6 \\ 1.25 \text { to } 2 \end{gathered}$	4	$\begin{gathered} 5.5-6 \text { to } \\ 22-6 \\ \hline \end{gathered}$	$\begin{gathered} 1.25-4 \text { to } 2-4 \\ 5.5-S 4 \end{gathered}$	3.5 to 5.7	1.2 to 1.9
TH-T100 (Load side)	$15 \times 7.5 \times 10$	M6×12			(8 to 38) Note 3		3.7	$\begin{gathered} 14-6 \text { to } \\ 22-6 \\ 38-\mathrm{S} 6 \end{gathered}$		3.5 to 5.7	

Note 1: The dimension of the main circuit terminal is a dimension for board conductor wiring. (See the right diagram) The board conductor thickness (D dimension) must be below the allowable connection conductor thickness stated above because of the length of the terminal screw. In case of wiring with two boards used, the total value of two boards must be below the value (D dimension) shown in the table. Note 2: In each terminal, two wires or two crimp lugs are allowed to be connected.
Note 3: The cross slot screws with pressure plate of T Series and those of N or other Series are same in size but different in pressure plate dimension, so please avoid the mixed use of such screws. This may break the insulation barrier or make the wire likely to fall out.
Note 4: When using IEC60529-based finger safe specification, be sure to use an insulation tube-attached crimp lug.
Note 5: Tightening the 3 terminal screw excessively without wiring may break the screw and consequently disable the tightening, so please avoid such excessive tightening.

Application to a circuit exceeding 380V

(1) When applying MSO, S-T10, T12, T20, MSOD/SD-T12, T20, SR(D)-T5, T9, and TH-T18 types to a circuit exceeding 380V to set a crimp lug wiring, please use an insulating tube-attached crimp lug.
(2) When applying such parts to a Reversing type circuit exceeding 500V, please use an SR-T type Contactor Relays (XF, XR) as shown in the right figure to set the switching time allowance.

-Wiring direction

Although the upper terminal side is usually set to the power supply side when wiring, the lower terminal side may be set to the power supply side when it is unavoidable due to some reason of the board wiring. However, the mounting direction must be in accordance with the description on Page 14.

In case of Reversing type circuit exceeding 500V

Operating circuit

\triangle Applying a low voltage that does not operate the Magnetic Contactors to the operating circcuit may cause overcurrent to the coil, which may cause the coil to be burned in a short time.
If the operating circuit wiring is too long, when the coil's instantaneous current flows, the wiring impedance may cause a reduction in the coil voltage, so that the operating circuit may fail to be activated. And, the stray capacitance of the wired line may cause the coil's excitation not to be released even when releasing the excitation.
© Use in a circuit (inverter) with high harmonics and high frequency levels can burn the operation coil or surge absorber with CR in the $\mathrm{S}-\mathrm{T} 65$ to T 100 type Magnetic Contactors.

Power supply voltage fluctuation range for operating circuit

(1) Operating voltage

When the rated voltage and frequency are applied to the coil at an ambient temperature of $40^{\circ} \mathrm{C}$ (Inside temperature of the board: $55^{\circ} \mathrm{C}$), the device operates without any problem at 85 to 110% of the rated voltage of the coil after the temperature increases and becomes saturated.
(2) Voltage/Frequency and coil rating of operating circuit

The voltage/frequency of the operating circuit and the same of the operation coil must be matched.
Applying a voltage exceeding 100% of the rated voltage to the operating circuit when using the coil may acceleratedly deteriorate the coil insulation and consequently reduce mechanical durability, so set the coil's average voltage to 95 to 100% of the rated voltage when using the coil.

Driving Magnetic Contactor with Triac control

The electromagnet in the S-T65 to T100 type Magnetic Contactor incorporates the capacitor-drop type AC operated DC excited method using the capacitor drop. Thus, a Triac with voltage resistance that is $2 \sqrt{ } 2$-fold the circuit voltage must be selected. If the Triac voltage resistance is low, use of a varistor in parallel with the Triac is recommended.

Using with square wave power supply

The electromagnet in the S-T65 to T100 type Magnetic Contactor incorporates the AC operated DC exciting method using the capacitor drop. It cannot be used with a square wave as the coil's exciting current will increase greatly.

Application to special environment

. Please note that the operating characteristics of the Magnetic Contactor and Thermal Overload Relay may vary with the ambient temperature.

OHigh temperature

When using Magnetic Starters or Magnetic Contactors at high ambient temperature, the temperature may mainly affect the insulation life (continuous electric conduction life) of the operation coil and the aging variation of the molding component.
MSO and S-T type without a box are standard products available even at the inside temperature of $55^{\circ} \mathrm{C}$.

-Low temperature

Although the Magnetic Contactors may be transported to a cold region or used in such a cold region or under cold conditions such as those found in a refrigerator with the contactor incorporated in a switchboard, the S-T type Magnetic Contactors is applicable as a standard product. Also, MSO-T type Magnetic Starters and TH-T type Thermal Overload Relays of low temperature specification are not manufactured.

Low-temperature-based products: S-T $\square, \mathrm{S}-2 \times \mathrm{T} \square$ types
Applicable temperature range of low-temperature product: Operating temperature -50 to $55^{\circ} \mathrm{C}$, Storage temperature -60 to $65^{\circ} \mathrm{C}$

Corrosive gas

S-T type Magnetic Contactors is of corrosion resistance-increased specification as a standard product.
Corrosive gases that exist in an environment with an Magnetic Starters or Magnetic Contactors used are gases such as sulfurous acid $\left(\mathrm{SO}_{2}\right)$, hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$, chlorine $\left(\mathrm{Cl}_{2}\right)$, and ammonia $\left(\mathrm{NH}_{3}\right)$, and conductive portions can be protected by plating a metal resistant to such gases on the portion. However, because there is no adequate corrosion prevention method for the contact, such gases may increase the contact resistance, resulted in increased temperature.
Additionally, if the environment contains some corrosive gas but is under dry condition, this may delay the progression of corrosion, so using the switchboard with the inside kept as dry as possible is also one of the corrosion prevention methods. In the Magnetic Starters and Thermal Overload Relays, corrosion-prevented products (MSO-T $\square \mathrm{YS}, \mathrm{TH}-\mathrm{T} \square \mathrm{YS}$) of the specification with increased corrosion resistance to such corrosive gases are also manufactured.

Dust

Magnetic Starters and Magnetic Contactors used in an iron foundry, construction site, or powder conveying machine tend to be subject to a relatively large amount of dust. When using the control board in such locations, the board must be dust-preventionstructured. Also, using the board under hermetically-sealed condition for a long period may cause contact failure.

Export of the products to tropical regions

The environment of exported products which pass through tropical regions tends to be of high temperature and high humidity, and humidity is the environmental factor that affects the Magnetic Starters and Magnetic Contactors most severely. Humidity is the biggest rust-generating factor and the exported products must be in a structure resistant to humidity.
Therefore, it is recommended to put a moisture absorbent (Silica gel) in an amount of 3 kg or more per m^{3}; so as to lower the humidity.

Specification List Table

Magnetic Starters/Magnetic Contactors ${ }_{\text {(AC operated) }}$

Note 1: The figure in the square brackets indicates the rated current shown on the rating plate of the product at which the category AC-3 opening/closing durability is $2,000,000$ times $(1,000,000$ times for the T 20380 V . Refer to the electric durability curve for the life performance.
Note 2: The content within () of rated capacity and rated operational current is applied to the Magnetic Contactor.
Note 3: The T10 to T50 types can be manufactured with a coil surge absorber-mounted type (\square - \square SA type). The UT-SA21 type can be mounted.
Note 4: +2 b of T10 and T12 auxiliary contact arrangements in Reversing type represents b contact built in the UT-ML11 interlock unit.
Note 5 : The main unit and auxiliary contact block must be prepared separately and additionally mounted by the user.
Note 6: For auxiliary contact arrangement in Reversing type, X2 is displayed as combined auxiliary contact arrangement of two Magnetic Contactors. Please specify the contact arrangement for which two main units are combined must be designated. <Designation example> In case of $1 \mathrm{~b} \times 2+2 \mathrm{~b}$: 2 B
Note 7: Operational coil input and coil consumption are average values in case of applying 220 V 60 Hz to AC 200 V coil.
Note 8: Refer to pages 36 for the mountable options.
Note 9: 1,000,000 times for T20 AC-3 Class 380 V or higher, and 15,000 times for AC-4 Class. 15,000 times for T35 to T100 AC-4 Class 380 V or higher.

T25	T32	T35	T50	T65	T80	T100
JIS C8201-4-1,IEC60947-4-1,EN60947-4-1, GB14048.4						
S-T25	S-T32	S-T35	S-T50	S-T65	S-T80	S-T100
S-2×T25	S-2×T32	S-2×T35	S-2×T50	S-2×T65	S-2×T80	S-2×T100
MS-2×T25	-	MS-T35	MS-T50	MS-T65	MS-T80	MS-T100
MS-T25	-	MS-2XT35	MS-2XT50	MS-2XT65	MS-2XT80	MS-2XT100
MSO-T25	-	MSO-T35	MSO-T50	MSO-T65	MSO-T80	MSO-T100
MSO-2×T25	-	MSO-2×T35	MSO-2×T50	MSO-2×T65	MSO-2×T80	MSO- $2 \times$ T100
TH-T25	-	TH-T25/T50	TH-T25/T50	TH-T65	TH-T65/T100	TH-T65/T100
MSO-T25KP	-	MSO-T35KP	MSO-T50KP	MSO-T65KP	MSO-T80KP	MSO-T100KP
MSO-2×T25KP	-	MSO-2×T35KP	MSO-2×T50KP	MSO-2×T65KP	MSO-2×T80KP	MSO-2×T100KP
TH-T25KP	-	TH-T25/T50KP	TH-T25/T50KP	TH-T65KP	TH-T65/T100KP	TH-T65/T100KP
690						
6						
50/60						
3						
7.5/30(26) [5.5/26]	7.5/32 [7.5/32]	11/40 [7.5/35]	15/55 [11/50]	18.5/65 [15/65]	22/85 [19/80]	30/105 [22/100]
15/30(26) [11/25]	15/32 [15/32]	18.5/40 [15/32]	22/48 [22/48]	30/65 [30/65]	45/85 [37/80]	55/105 [45/93]
15/24 [11/20]	15/24 [11/20]	18.5/32 [15/26]	25/38 [22/38]	37/60 [30/45]	45/75 [45/75]	55/85 [45/75]
11/12	11/12	15/17	22/26	30/38	45/52	55/65
4.5/20	5.5/26	5.5/26	7.5/35	11/50	15/65	19/80
7.5/17	11/24	11/24	15/32	22/47	30/62	37/75
7.5/12	7.5/13	11/17	15/24	22/38	30/45	37/55
32		60	80	100	120	150
32		60	80	100	120	150
32		60	80	100	120	150
48 V 200 mA						
2a2b	-	2a2b	2a2b	2a2b	2a2b	2 a 2 b
$2 \mathrm{a} 2 \mathrm{~b} \times 2$						
-		-	-	-	-	-
-		-	-	-	-	-
1						-
2	-	2				-
2						
2	-	2				
6						
3						
3						
0.6						
10						
20 V 3 mA						
1000				500		
200					100	
3 (Note 9)						
50						
1800			1200			
300						
1200						600
75	55	110	110	115	115	210
7	4.5	10	10	20	20	23
2.4	1.8	3.8	3.8	2.2	2.2	2.8
$63 \times 81 \times 81$	$43 \times 81 \times 81$	$75 \times 89 \times 91$		$88 \times 106 \times 106$	$88 \times 106 \times 106$	$100 \times 124 \times 127$
$136 \times 81 \times 81$	$96 \times 81 \times 111$	$160 \times 114 \times 97$		$216 \times 115 \times 112$	$216 \times 115 \times 112$	$270 \times 140 \times 137$
$63 \times 128 \times 82$	-	$75 \times 157.5 \times 91$		$90 \times 158 \times 106$	$90 \times 174.5 \times 106$	$100 \times 196 \times 127$
$136 \times 138 \times 82$	-	$160 \times 179 \times 97$		$216 \times 169 \times 112$	$216 \times 185.5 \times 112$	$270 \times 213 \times 137$
-		$135 \times 231 \times 126$		$160 \times 282 \times 145$		$190 \times 317 \times 163$
-		$300 \times 247 \times 130$		$320 \times 282 \times 140$		$410 \times 347 \times 154$
Possible (excluding Enclosed Magnetic Starters)						-

Specification List Table

Magnetic Starters/Magnetic Contactors (oc operated)

Note 1: The figure in the square brackets indicates the rated current shown on the rating plate of the product at which the category AC-3 opening/closing durability is $2,000,000$ times $(1,000,000$ times for the T 20380 V). Refer to the electric durability curve for the life performance.
Note 2: The content within () of rated capacity and rated operational current is applied to the Magnetic Starter
Note 3: Coil surge absorber-mounted type ($\square-\square$ SA type) is also manufactured. UT-SA21 type is mounted.
Note 4: +2b of T10 and T12 auxiliary contact arrangements in Reversing type represents b contact built in the UT-ML11 interlock unit.
Note 5: The main unit and auxiliary contact block must be prepared separately and additionally mounted by the user.
Note 6: For auxiliary contact arrangement in Reversing type, X2 is displayed as combined auxiliary contact arrangement of two Magnetic Contactors. Please specify the contact arrangement for which
two main units are combined must be designated. <Designation example> In case of $1 \mathrm{~b} \times 2+2 \mathrm{~b}$: 2 B
Note 7: The above table shows the reference characteristics for a DC100V coil. The values in () for SD-T12 to T32 indicate the reference characteristics for the DC12V and DC24V coils.
Note 8: Refer to pages 36 for the mountable options.
Note 9: 1,000,000 times for T20 AC-3 Class 380V or higher, and 15,000 times for T35 to T100 AC-4 Class 380V or higher.

T32	T35	T50	T65	T80	T100
JIS C8201-4-1,IEC60947-4-1, EN60947-4-1,GB14048.4					
SD-T32	SD-T35	SD-T50	SD-T65	SD-T80	SD-T100
SD-2×T32	SD-2×T35	SD-2×T50	SD-2×T65	SD-2×T80	SD-2×T100
-	MSOD-T35	MSOD-T50	MSOD-T65	MSOD-T80	MSOD-T100
-	MSOD-2×T35	MSOD-2×T50	MSOD-2×T65	MSOD-2×T80	MSOD-2×T100
-	TH-T25/T50	TH-T25/T50	TH-T65	TH-T65/T100	TH-T65/T100
-	MSOD-T35KP	MSOD-T50KP	MSOD-T65KP	MSOD-T80KP	MSOD-T100KP
-	MSOD-2×T35KP	MSOD-2×T50KP	MSOD-2×T65KP	MSOD-2×T80KP	MSOD- $2 \times$ T100KP
-	TH-T25/T50KP	TH-T25/T50KP	TH-T65KP	TH-T65/T100KP	TH-T65/T100KP
690					
6					
50/60					
3					
7.5/32 [7.5/32]	11/40 [7.5/35]	15/55 [11/50]	18.5/65 [15/65]	22/85 [19/80]	30/105 [22/100]
15/32 [15/32]	18.5/40 [15/32]	22/48 [22/48]	30/65 [30/65]	45/85 [37/80]	55/105 [45/93]
15/24 [11/20]	18.5/32 [15/26]	25/38 [22/38]	37/60 [30/45]	45/75 [45/75]	55/85 [45/75]
5.5/26	5.5/26	7.5/35	11/50	15/65	19/80
11/24	11/24	15/32	22/47	30/62	37/75
7.5/13	11/17	15/24	22/38	30/45	37/55
32	60	80	100	120	150
32	60	80	100	120	150
32	60	80	100	120	150
48 V 200 mA					
-	2a2b	2a2b	2a2b	2a2b	2a2b
$2 \mathrm{a} 2 \mathrm{~b} \times 2$					
-	-	-	-	-	-
-	-	-	-	-	-
1					-
-	2				-
2					
-	2				
6					
3					
3					
0.6					
10					
20 V 3 mA					
1000				500	
				500100	
3(Note 9)					
50					
1800		1200			
300					
1200					600
1.8	9	9	18	18	24
$43 \times 81 \times 108$	$75 \times 89 \times 123$		$88 \times 106 \times 133$	$88 \times 106 \times 133$	$100 \times 134 \times 157$
$96 \times 81 \times 138$	$160 \times 114 \times 129$		$216 \times 115 \times 139$	$216 \times 115 \times 139$	$270 \times 147 \times 167$
-	$75 \times 157.5 \times 123$		$90 \times 160 \times 133$	$90 \times 176.5 \times 133$	$100 \times 206 \times 157$
-	$160 \times 179 \times 129$		$216 \times 169 \times 139$	$216 \times 185.5 \times 139$	$270 \times 213 \times 167$
Possible					-

Selection and Application

Making and Breaking capacities

Frame		T10	T12	T20	T21	T25	T32	T35	T50	T65	T80	T100
Making capacity Category AC-3 [A]	220 to 240VAC	110	130	180	250	300	320	400	550	650	850	1050
	380 to 440VAC	90	120	180	230	300	320	400	500	650	850	1050
	500VAC	70	90	170	170	240	240	320	380	600	750	850
Breaking capacity Category AC-4 [A]	220 to 240VAC	88	104	144	200	240	256	320	440	520	680	840
	380 to 440VAC	72	96	144	184	240	256	320	400	520	680	840
	500VAC	56	72	136	136	192	192	256	304	480	600	680

Coordination with short-circuit protective devices

Magnetic Contactors model			T10	T12	T20	T21	T25	T32	T35	T50	T65	T80	T100	SR-T5/T9
Type1	Shor-circuit protective device rating * Fuse gG (IEC60269-1/2)	Main circuit	40A			80A			100A			125A	160A	-
		Auxiliary circuit	10A											10A

Electrical Durability Curve

Main circuit voltage 220 to 240VAC

Main circuit voltage 380 to 440VAC

Coil Ratings

Coil types and ratings (Alternating voltage operation type)

For S-T10 to T100 types
For SR-T5 and T9 types

Coil designation	Rated voltage [V]	Marking on the equipment
	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	
AC48V	24	
AC100V	$100-127$	
AC200V	$200-240$	
AC300V	$260-300$	
AC400V	$380-440$	
AC500V	$460-550$	

[^0]For S-T10SA to T50SA types
For SR-T5SA and T9SA types

Coil designation	Rated voltage [V]	Coil indication	Varistor voltage [V]
	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$		
AC24V	24	Rated voltage and frequency	120
AC48V	48-50		120
AC100V	100-127		470
AC200V	200-240		470
AC300V	260-300		910
AC400V	380-440		910

Note 1: Add "SA" to the end of the type name to order the operation coil surge absorber mounting type (varistor). Example: S-T10SA AC100V
Note 2 : Even when the single rating (example: 200 V 60 Hz) is specified for an order, the above rating voltage is indicated on the product.

Coil types and ratings (DC operated type)

For SD-T12 to T100 types For SRD-T5 and T9 types

Coil designation	Rated voltage	Coil indication
DC12V	DC12V	Rated voltage
DC24V	DC24V	
DC48V	DC48V	
DC100V	DC100V	
DC110V	DC110V	
DC125V	DC120-DC125V	
DC200V	DC200V	
DC220V	DC220V	

Note 1: The operating coil terminal has a polarity (excluding T35 to T100 types). Connect the positive side to terminal number A1 (+) and the negative side to A2 (-).
Note 2: If the operation power supply is a rectifier, open and close the coil on the DC side.

For SD-T12SA to T50SA types
For SRD-T5SA and T9SA types
$\begin{array}{l|c|c|c}\text { Coil } \\ \text { designation }\end{array}$ Rated voltage $\left.\begin{array}{c}\text { Coil } \\ \text { indication }\end{array} \begin{array}{c}\text { Varistor } \\ \text { voltage [V] }\end{array}\right]$

Note 1: If the type with surge absorber for operation coil (varistor) is required, add "SA" to the end of the model when placing your order. Example: SD-T21SA 100VDC
Note 2: The operating coil terminal has a polarity (excluding T35SA to T50SA types). Connect the positive side to terminal number A1 $(+)$ and the negative side to $\mathrm{A} 2(-)$.
Note 3: Variations other than the above cannot be manufactured.

Contact Reliability

Contact reliability of main and auxiliary contacts

The minimum working voltage and current of the main and auxiliary contacts of the S-T type Magnetic Contactors and the contact of the SR-T type Contactor Relays vary depending on the allowable failure rate.
Apply the following diagrams.
The contact reliability reduces when a contact is connected in series or when the current is applied and broken at the time of opening and closing the contact. Prescribe remedies such as connecting the contact in parallel (providing redundancy).
If a reliability higher than the contact reliability given in Diagram 1 to Diagram 4 is required, the contacts must be connected in parallel (redundant).

Diagram 3 UT-AX2/4 auxiliary contact

Note 1: The contact reliability indicates the failure rate $\lambda 60$ (the number of failures/the number of opening and closing operations, per contact) at 60% reliability standard. This reliability is applied when the product is in use under a clean atmosphere in the standard specification environment (Refer to page 14).
Note 2: The contact resistance of the contacts may change due to economical corrosion and that may affect the contacts in the case of a light load. It is recommended that regular inspections to be conducted, with load opening and closing performed several times in the inspection, and that consideration be provided on the system side.

Specification List

Model list

[^1]
Model list

Frame					T50	T65	T100	
Appearance								
Model name			with2-elements	For Magnetic Starters	TH-T50	TH-T65	TH-T100	
			For independent mounting	-	-			
			with3-elements	For Magnetic Starters	TH-T50KP	TH-T65KP	TH-T100KP	
			For independent mounting	-	-			
				Outside dimensions [mm] $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$	For Magnetic Starters	$74.3 \times 72 \times 83.5$	$89 \times 57 \times 83.5$	$89 \times 73.5 \times 83.5$
			For independent mounting		-	-		
			Product weight [kg]	For Magnetic Starters	0.2	0.26	0.32	
			For independent mounting	-	-			
Applicable standard					IEC60947-4-1,EN60947-4-1,JIS C8201-4-1,GB14048.4			
Use condition A				Ambient temperature [${ }^{\circ} \mathrm{C}$]	-10 to +40 (Standard: $20^{\circ} \mathrm{C}$; maximum temperature on the board: $55^{\circ} \mathrm{C}$)			
				Frequency [Hz]	0(DC) to 400			
	Rated insulation voltage [V]				690			
	Rated impulse withstand voltage [kV]				6			
	Pollution degree				3			
	Heater designation (adjustable range of stabilized current) [A] (Rated operational voltage : 550V maximum)				$\begin{aligned} & 29(24 \text { to } 34) \\ & 35(30 \text { to } 40) \\ & 42(34 \text { to } 50) \end{aligned}$	$\begin{aligned} & 15 \text { (12 to } 18) \\ & 22(18 \text { to } 26) \\ & 29 \text { (24 to } 34) \\ & 35(30 \text { to } 40) \\ & 42(34 \text { to } 50) \\ & 54(43 \text { to } 65) \end{aligned}$	$\begin{aligned} & 67 \text { (54 to } 80) \\ & 82 \text { (65 to 100) } \end{aligned}$	
	Power consumption [VA/element] at minimum/maximum stabilization				1.6/3.2	2.4/5.5	2.5/6.0	
	Terminal screw size				M5	M6	M6	
	Compatible with terminal			Electric wire size $\left[\mathrm{mm}^{2}\right]$	$\phi 5.5$ to 14	-	-	
				Crimp lug size	5.5-5 to 14-5	5.5-6 to 22-6	14-6 to 22-6, 38-S6	
	Contact arrangement				1a1b	1a1b	1a1b	
	Conventional free air thermal current Ith [A]				5	5	5	
	 Rating Opextional Curent [A]	Category AC-15 $\binom{$ AC operated Magnetic Contactors }{ Coil opening and closing } a contact/b contact The value in brackets indicates the rating for automatic reset.		24VAC	2(0.5) / 3(0.5)	2(0.5) / 3(0.5)	2(0.5) / 3(0.5)	
					120VAC	$2(0.5) / 3(0.5)$	$2(0.5) / 3(0.5)$	$2(0.5) / 3(0.5)$
				240VAC	$1(0.5) / 2(0.5)$	$1(0.5) / 2(0.5)$	$1(0.5) / 2(0.5)$	
				550 VAC	0.3(0.3) / 0.3(0.3)	0.5(0.5) / 1(0.5)	$0.5(0.5) / 1(0.5)$	
		Category DC-13 (DC operated Magnetic ContactorsCoil opening and closing The value in racketets indicates the rating for automatic reset.		24VDC	1 (0.3)	1 (0.3)	1 (0.3)	
				110VDC	0.2(0.2)	0.2(0.2)	0.2(0.2)	
				220VDC	0.1 (0.1)	0.1 (0.1)	0.1 (0.1)	
		Minimum applicable load level			20 V 5 mA	20 V 5 mA	20V 5mA	
	Terminal screw size				M3.5	M4	M4	
	Compatible with terminalElectric Cri			ric wire size $\left[\mathrm{mm}^{2}\right]$	$\phi 1.6,1.25$ to 2	$\phi 1.6,1.25$ to 2	$\phi 1.6,1.25$ to 2	
				Crimp lug size	1.25-3.5 to 2-3.5	$1.25-4$ to 2-4, 5.5-S4	1.25-4 to 2-4, 5.5-S4	
	Trip class				10A	15 to 42A:10 54A:10A	67A:10 82A:10A	
	Operating characteristic curve description page				Page 27			
	Vibration resistance (vibration resistance malfunction performance)				10 to $55 \mathrm{~Hz} \quad 19.6 \mathrm{~m} / \mathrm{s}^{2}$			
	Trip-free				(0)	((
	Reset method				Manual/Automatic switchable	Manual/Automatic switchable	Manual/Automatic switchable	
	Operation indication (lever indication)				(((
	Manual trip check				()	($)$	()	
	With saturable reactor			TH- \square SR	O(TH-T50SR)	O(TH-T65SR)	O(TH-T100SR)	
	With 3-element (2E) thermal saturable reactor			TH- \square KPSR	O(TH-T50KPSR)	O(TH-T65KPSR)	O(TH-T100KPSR)	
	2-element quick-acting characteristics thermal			TH- $\square \mathrm{FS}$	\triangle (TH-T50FS)	\triangle (TH-T65FS)	\triangle (TH-T100FS)	
	With 3-element (2E) thermal quick-acting characteristics			TH- \square FSKP	\triangle (TH-T50FSKP)	\triangle (TH-T65FSKP)	\triangle (TH-T100FSKP)	

Note 1: The ambien
Note 1:
Note 2: © indicates standard equipment.

Application to standard three-phase motor of Thermal Overload Relays

Precautions for Use

Disassembly

The Thermal Overload Relays are adjusted at the time of assembly. Do not disassemble it.

Ambient temperature compensation

The TH-T type Thermal Overload Relays are adjusted with the Magnetic Starters in the standard box (the MS type) relative to the ambient temperature of $20^{\circ} \mathrm{C}$ (The temperature on the control board of the MSO type Magnetic Starters is $35^{\circ} \mathrm{C}$). The ambient temperature compensator is mounted on the TH-T type Thermal Overload Relays. Therefore, the ambient temperature less affects the operational characteristic change. The minimum operating current change according to the ambient temperature change relative to the ambient temperature of $20^{\circ} \mathrm{C}$ (the temperature on the control board of $35^{\circ} \mathrm{C}$) generally depends on the characteristics in the diagrams 1 and 2 .
The Thermal Overload Relays have a characteristic that the operating current becomes high when the ambient temperature is low and becomes low when the ambient temperature is high. If the ambient temperature of the installation site is significantly different from $20^{\circ} \mathrm{C}$ (the temperature on the control board of $35^{\circ} \mathrm{C}$), the setting current of the Thermal Overload Relays needs to be corrected as shown in diagrams 1 and 2. In addition, note that the compensation factor has a characteristic to be the minimum scale>middle scale>maximum scale at the adjustment knob location. (Note that the Thermal Overload Relays may operate at a current of less than 100% stabilized current if in use at temperatures exceeding the allowable working temperature of $40^{\circ} \mathrm{C}\left(55^{\circ} \mathrm{C}\right)$.)

Diagram 1. Ambient temperature compensation curve (T18 frame)

Diagram 2. Ambient temperature compensation curve (T25,T50,T65,T100 frame)

Compensation factor: Percentage of the minimum operating current at the ambient temperature of $20^{\circ} \mathrm{C}$ (the temperature on the control board of $35^{\circ} \mathrm{C}$)
<Compensation procedure of setting current>
<Compensation procedure of setting current>
Determine the compensation factor of the working ambient temperature according to the curves in diagrams 1 and 2 and use the value of all load currents of the motor divided by
the determined compensation factor as the stabilization value.
Example: The ambient temperature compensation factor for TH-T25 at the ambient temperature of $40^{\circ} \mathrm{C}$ (the temperature on the control board of $55^{\circ} \mathrm{C}$) is 97% at the minimum scale according to diagram 2. If the motor rated current is 15 A , the stabilization value is $15.5 \mathrm{~A}(=15 / 0.97)$.)
Note 1: [${ }^{*} 1$] The ambient temperature applied to the MS type indicates the outside temperature of the box.
[${ }^{*}$] The temperature including temperature increase on the control board applied to the MSO type is indicated.

Connecting electric wire size and operating current
The TH-T type adjusts the minimum operating current with the standard electric wire size shown in the following table. If the electric wire is thicker or thinner than this standard electric wire size, the operating current becomes high or low, respectively. Therefore, correct the stabilized current (divide it by the change rate of the minimum operating current) to use a size different from the standard connecting electric wire size.

Model name	Heater designation [A]	Standard electric wire size [mm^{2}]	Connecting electric wire size [mm^{2}]		Change rate of minimum operating current [\%]	
TH-T18(KP)	0.12 to 15	2	1.25	2.5	98	103
TH-T25 (KP)	0.24 to 11					
TH-T25(KP)	15, 22	3.5	2	6	97	104
TH-T50(KP)	29	8	5.5	14	96	104
	35					
TH-T65(KP)	15	3.5	2	5.5	95	105
	22, 29	5.5	3.5	8	96	105
	35	8	5.5	14	95	105
	42	14	8	22	95	104
	54	22	14	30	96	104
TH-T100(KP)	67	22	14	30	97	103
	82	38	30		97	

Operating Characteristic of Thermal Overload Relays Ammbent Teneneature of 200) Themal Overooad Peal/s

For the information on the connecting electric wire size, refer to page 16.

Operating Characteristic of Thermal Overload Relays Ambient $^{\text {Temperature of } 20^{\circ} \text { c) }}$

TH-T18SR

-TH-T50SR,T50KPSR

TH-T25SR,T25KPSR

TH-T65SR,T65KPSR TH-T100SR,T100KPSR

TH-T18FSKP

TH-T25FS,TH-T25FSKP OTH-T50FS,T50FSKP

TH-T65FS,T65FSKP
TH-T100FS,T100FSKP

Magnetic Starters

MS-T series (non-Reversing) : Enclosed MS-2xT series (Reversing) : Enclosed

Note 1: The figure in the square brackets indicates the rated current shown on the rating plate of the product at which the category AC-3 opening/closing durability is $2,000,000$ times ($1,000,000$ times
for the T20 380V). Refer to the electric durability curve for the life performance

MSO-T series (non-Reversing) : Open type
MSO-2xT series (Reversing) : Open type

Note 1: The figure in the square brackets indicates the rated current shown on the rating plate of the product at which the category AC-3 opening/closing durability is $2,000,000$ times ($1,000,000$ times
for the T20 380V). Refer to the electric durability curve for the life performance.

Thermal Overload Relays configuring the Magnetic Starters

Thermal Overload Relays models and heater types that configure Magnetic Starters

Magnetic Contactors frame	Thermal Overload Relays model	Heater designation (adjustable range of stabilized current) (A)
T10, T12, T20	TH-T18	$0.12(0.1$ to 0.16$), 0.17(0.14$ to 0.22$), 0.24(0.2$ to 0.32$), 0.35(0.28$ to 0.42$), 0.5(0.4$ to 0.6$), 0.7(0.55$ to 0.85$), 0.9(0.7$ to 0.1$)$, $1.3(1$ to 1.6$), 1.7(1.4$ to 2$), 2.1(1.7$ to 2.5$), 2.5(2$ to 3$), 3.6(2.8$ to 4.4$), 5(4$ to 6$), 6.6(5.2$ to 8$), 9(7$ to 11$), 11(9 \text { to } 13)^{*}, 15(12 \text { to } 18)^{*}$
T21, T25	TH-T25 Note 3	$\begin{array}{\|l\|} \hline 0.24(0.2 \text { to } 0.32), 0.35(0.28 \text { to } 0.42), 0.5(0.4 \text { to } 0.6), 0.7(0.55 \text { to } 0.85), 0.9(0.7 \text { to } 1.1), 1.3(1 \text { to } 1.6), 1.7(1.4 \text { to } 2), \\ 2.1(1.7 \text { to } 2.5), 2.5(2 \text { to } 3), 3.6(2.8 \text { to } 4.4), 5(4 \text { to } 6), 6.6(5.2 \text { to } 8), 9(7 \text { to } 11), 11(9 \text { to } 13), 15(12 \text { to } 18), 22(18 \text { to } 26)^{*} \\ \hline \end{array}$
T35	TH-T25	0.24 (0.2 to 0.32), 0.35 (0.28 to 0.42), 0.5 (0.4 to 0.6), 0.7 (0.55 to 0.85), 0.9 (0.7 to 1.1), 1.3 (1 to 1.6), 1.7 (1.4 to 2), 2.1 (1.7 to 2.5), 2.5 (2 to 3), 3.6 (2.8 to 4.4), 5 (4 to 6), 6.6 (5.2 to 8), 9 (7 to 11), 11 (9 to 13), 15 (12 to 18), 22 (18 to 26)
	TH-T50	29 (24 to 34)
T50	TH-T25	0.24 (0.2 to 0.32), 0.35 (0.28 to 0.42), $0.5(0.4$ to 0.6), 0.7 (0.55 to 0.85), 0.9 (0.7 to 1.1), 1.3 (1 to 1.6), 1.7 (1.4 to 2), 2.1 (1.7 to 2.5), 2.5 (2 to 3), 3.6 (2.8 to 4.4), 5 (4 to 6), 6.6 (5.2 to 8), 9 (7 to 11), 11 (9 to 13), 15 (12 to 18), 22 (18 to 26)
	TH-T50	29 (24 to 34), 35 (30 to 40), 42 (34 to 50)
T65	TH-T65	15 (12 to 18), 22 (18 to 26), 29 (24 to 34), 35 (30 to 40), 42 (34 to 50), 54 (43 to 65)
T80	TH-T65	15 (12 to 18), 22 (18 to 26), 29 (24 to 34), 35 (30 to 40), 42 (34 to 50), 54 (43 to 65)
	TH-T100	67 (54 to 80)
T100	TH-T65	15 (12 to 18), 22 (18 to 26), 29 (24 to 34), 35 (30 to 40), 42 (34 to 50), 54 (43 to 65)
	TH-T100	67 (54 to 80), 82 (65 to 100)

Note 1: Select the value closer to the heater designation if the stabilized current has two values.
Note 2: Heater designation marked with * has Magnetic Starters frames that cannot be applied. For information on the applicable Magnetic Starters frames, refer to the "Heater rating (designation) of standard Thermal Overload Relays" field in the above table.
Note 3: The connection conductor kit UN-TH21 is required to use in combination with the Magnetic Contactor to make a Magnetic Starters.

Magnetic Contactors

S-T series (non-Reversing)
 S-2xT series (Reversing)

Model name		Non	versing	S-T10	S(D)-T12	S(D)-T20	S(D)-T21	S-T25	S(D)-T32	
			sing	S-2×T10	S(D) $-2 \times \mathrm{T} 12$	S(D) $-2 \times$ T20	S(D) $-2 \times$ T21	S-2XT25	S(D)-2×T32	
Rated operational cuirent (A) Category AC-3 (Note 1, 2)		220	40VAC	11[11]	13[13]	18[18]	25[20]	30(26)[26]	32[32]	
		380	40VAC	9[7]	12[9]	18[18]	23[20]	30(26)[25]	32[32]	
				7[6]	9[9]	17[17]	17[17]	24[20]	24[20]	
Conventional free air thermal current Ith (A)				20	20	20	32	32	32	
Operation coil rating				Refer to pages 22						
Auxiliary contac arrangement	NonReversing	Standard		1 a	1a1b	1a1b	2a2b	2a2b	-	
				1b	2a	2a	-	-	-	
	Reversing	Standard		$1 a \times 2+2 b$	$1 \mathrm{a} 1 \mathrm{~b} \times 2+2 \mathrm{~b}$	$1 \mathrm{a} 1 \mathrm{~b} \times 2+2 \mathrm{~b}$	$2 \mathrm{a} 2 \mathrm{~b} \times 2$	$2 \mathrm{a} 2 \mathrm{~b} \times 2$	-	
		Special		$1 \mathrm{~b} \times 2+2 \mathrm{~b}$	$2 \mathrm{~b} \times 2+2 \mathrm{~b}$	$2 \mathrm{~b} \times 2+2 \mathrm{~b}$	-	-	-	
$\xrightarrow{\sim} \stackrel{C}{ }$			A	75	75	75	81	81	81	
		B	36	43	43	63	63	43		
\square			C	78	78(100)	78(100)	81(108)	81	81(108)	
			$$	A	85	85	85	81	81	81
		B		82	97	97	136	136	96	
	(unit: mm)	C		78	78(100)	78(100)	81(114)	81	111(138)	
IEC 35 mm rail mounting type										
OptionFrom Site S	Front clip-on auxiliary contact block mounting type									
	Side clip-on auxiliay contact block mounting type									
	Surge absorber mounting type									

Note 1: The figure in the square brackets indicates the rated current shown on the rating plate of the product at which the category AC-3 opening/closing durability is $2,000,000$ times ($1,000,000$ times for the T20 380V). Refer to the electric durability curve for the life performance.
Note 2: The content within () of rated capacity and rated operational current is applied to the Magnetic Contactor.

Thermal Overload Relays

TH-T series

Model name			T18	TH-T25	TH-T50	TH-T65	TH-T100
Application		MSO-T10 -T12 -T20	$\begin{array}{r} \text { MSOD-T12 } \\ -\mathrm{T} 20 \end{array}$	MSO-T21 MSOD-T21 - T25 -T 35 - T35 -T 50 $-T 50$	$\begin{array}{\|rr} \hline \text { MSO-T35 } & \text { MSOD-T35 } \\ \text {-T50 } & -T 50 \end{array}$	$\begin{array}{\|rr\|} \hline \text { MSO-T65 } & \text { MSOD-T65 } \\ - \text { T80 } & -T 80 \\ -T 100 & -T 100 \end{array}$	$\begin{array}{\|cc\|} \hline \text { MSO-T80 MSOD-T80 } \\ \text {-T100 } & - \text { T100 } \end{array}$
Standard heater rating (designation) (A)		$\begin{aligned} & 0.12,0.1 \\ & 0.35,0.5, \\ & 0.7,0.9 .1 \\ & 2.5, \\ & 3.6,5,6 . \end{aligned}$	$\begin{aligned} & \hline 0.24, \\ & 3,1.7,2.1, \\ & , 9,11,15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.24,0.35,0.5, \\ & 0.7,0.9,1.3,1.7 \\ & 2.1,2.5,3.6,5 \\ & 6.6,9,11,15,22 \end{aligned}$	29, 35, 42	$\begin{aligned} & 15,22,29 \\ & 35,42,54 \end{aligned}$	67, 82
Contact arrangement				1a1b	1a1b	1a1b	1a1b
(unit: mm)	A			53	74	57	73.5
	B			63	74.3	89	89
	C			80	88	83.5	83.5

Heater types
Heater types of TH type Thermal Overload Relays

Model	For Magnetic Starters For single mounting				Heater designation (adjustable range of stabilized current) (A)
	2-element	3-element	2-element	3-element	
	T18	T18KP	Note 1	Note 1	$0.12(0.1$ to 0.16$) \quad 0.17(0.14$ to 0.22$) \quad 0.24(0.2$ to 0.32$) \quad 0.35(0.28$ to 0.42$) \quad 0.5(0.4$ to 0.6$) \quad 0.7(0.55$ to 0.85$)$ $0.9(0.7$ to 1.1$) \quad 1.3(1$ to 1.6$) \quad 1.7(1.4$ to 2) $2.1(1.7$ to 2.5$) \quad 2.5(2$ to 3$) \quad 3.6(2.8$ to 4.4$) \quad 5(4$ to 6$) \quad 6.6(5.2$ to 8$)$ $9(7$ to 11) 11 (9 to 13) 15 (12 to 18)
	T25	T25KP	$\begin{aligned} & \text { T25 } \\ & \text { Note } 1 \\ & \hline \end{aligned}$	T25KP Note 1	$0.24(0.2$ to 0.32$) \quad 0.35(0.28$ to 0.42$) \quad 0.5(0.4$ to 0.6$) \quad 0.7(0.55$ to 0.85$) \quad 0.9(0.7$ to 1.1$) \quad 1.3(1$ to 1.6$)$ $1.7(1.4$ to 2$)$ $15(12$ to 18$)$ $22(18$ to 26$)$
	T50	T50KP	-	-	29(24 to 34) 35(30 to 40) 42(34 to 50)
	T65	T65KP	T65	T65KP	15(12 to 18) $22(18$ to 26$) \quad 29(24$ to 34$) \quad 35(30$ to 40$) \quad 42(34$ to 50$) \quad 54(43$ to 65$)$
	T100	T100KP	-	-	67(54 to 80) 82(65 to 100)
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 . \\ & \text { 을 } \\ & 0.0 \end{aligned}$	-	T18FSKP	Note 1	Note 1	2.1(1.7 to 2.5) $3.6(2.8$ to 4.4$) \quad 5(4$ to 6) $6.6(5.2$ to 8) $9(7$ to 11) $11(9$ to 13$) \quad 15(12$ to 18$)$
	T25FS	T25FSKP	T25FS	T25FSKP	2.1(1.7 to 2.5) $3.6(2.8$ to 4.4$) 5(4$ to 6$) \quad 6.6(5.2$ to 8$) 9(7$ to 11) $11(9$ to 13$) \quad 15(12$ to 18$) \quad 22(18$ to 26)
	T50FS	T50FSKP	-	-	29(24 to 34) 35(30 to 40) 42(34 to 50)
	T65FS	T65FSKP	T65FS	T65FSKP	42(34 to 50) 54(43 to 65)
	T100FS	T100FSKP	-	-	67(54 to 80) 82(65 to 93)
	T18SR	-	Note 1	Note 1	$0.24(0.2$ to 0.32$) \quad 0.35(0.28$ to 0.42$) \quad 0.5(0.4$ to 0.6$) \quad 0.7(0.55$ to 0.85$) \quad 0.9(0.7$ to 1.1$) 1.3(1$ to 1.6$)$ $1.7(1.4$ to 2$)$ $15(12$ to 18$)$
	T25SR	T25KPSR	$\begin{aligned} & \text { T25SR } \\ & \text { Note } 1 \\ & \hline \end{aligned}$	T25KPSR Note 1	$0.24(0.2$ to 0.32$) \quad 0.35(0.28$ to 0.42$) \quad 0.5(0.4$ to 0.6$) \quad 0.7(0.55$ to 0.85$) \quad 0.9(0.7$ to 1.1$) \quad 1.3(1$ to 1.6$)$ $1.7(1.4$ to 2$) \quad 2.1(1.7$ to 2.5$) \quad 2.5(2$ to 3$) 3.6(2.8$ to 4.4$) \quad 5(4$ to 6$) \quad 6.6(5.2$ to 8$) \quad 9(7$ to 11$) \quad 11(9$ to 13$)$ 15(12 to 18) 22(18 to 26)
	T50SR	T50KPSR	-	-	29(24 to 34) 35(30 to 40) 42(34 to 50)
	T65SR	T65KPSR	T65SR	T65KPSR	15(12 to 18) $22(18$ to 26) $29(24$ to 34$) \quad 35(30$ to 40) $42(34$ to 50) $54(43$ to 65)
	T100SR	T100KPSR	-	-	67(54 to 80) 82(65 to 100)

[^2]
Contactor Relays

Specification List

[^3]
Contactor Relays

Contact arrangement/Contact placement

Model name	$\begin{gathered} \text { SR-T5 } \\ \text { SRD-T5 } \end{gathered}$	$\begin{aligned} & \text { SR-T9 } \\ & \text { SRD-T9 } \end{aligned}$
Contact arrangement	5a	9a
	4a1b	7a2b
	3a2b	5a4b
	 5a	
Contact placement	4a1b	
	3a2b	5a4b

Combination with additional auxiliary contact block
The SR-T series contactor type Contactor Relay is usable in combination with the following additional auxiliary contact blocks.

Auxiliary contactContactor Relay \quad blocks		Front clip-on						Side clip-on	
		UT-AX4			UT-AX2			UT-AX11	UT-AX11
Model name	Contact arrangement	4a	3a1b	2a2b	2 a	1a1b	2b	$1 \mathrm{a} 1 \mathrm{~b}+1 \mathrm{a}$ b	1a1b
$\begin{aligned} & \text { SR-T5 } \\ & \text { SRD-T5 } \end{aligned}$	5a	9 a	8a1b	7a2b	7a	6a1b	5a2b	7a2b	6a1b
	4a1b	8a1b	7a2b	6a3b	6a1b	5a2b	4a3b	6a3b	5a2b
	3a2b	7a2b	6a3b	5a4b	5a2b	4a3b	3a4b	5a4b	4a3b

[^4]
Optional Units

Model list (for MS-T series)

	Model name	Auxiliary contact blocks			Operation coil surge absorber unit				
	Type	UT-AX4	UT-AX2	UT-AX11	UT-SA21	UT-SA22	UT-SA13	UT-SA23	UT-SA25
	Mounting	Front clip-on		Side clip-on	Mounting on top				
					Operation coil surge absorber				
	Specification/ Function	Twin contact built-in 4-pole auxiliary contact (4a, 2a2b, 3a1b)	Twin contact built-in 2-pole auxiliary contact (2a, 1a1b, 2b)	Twin contact built-in 2-pole auxiliary contact (1a1b)	\quad With \quad varistor 24 VAC (Shared with DC) 48 VAC (Shared with DC) 200 VAC (Shared with DC) 400VAC	With varistor + indicating LED 200VAC (Shared with DC)	With CR DC200V	With CR AC200V	With varistor + CR 48VAC (Shared with DC) 200VAC (Shared with DC)
Appearance (Typical example)		UT-AX4		UT-AX11			UT-SA21		
$\overline{\text { ¢ }}$	Magnetic Starters	S-T10~T50/SD-T12~T50							
$\stackrel{\text { E }}{ }$	Magnetic Contactors	MSO-T10~T25/MSOD-T12~T21							
.	Contactor Relays	SR(D)-T5			SR(D)-T5/T9				
	thermal relay	-							

Model name	Mechanical interlocks		Single mounted unit	Main circuit conductor kit		
Type	UT-ML11	UT-ML20	UT-HZ18	UT-SD10	UT-SD20	UT-SD25
Mounting	Side clip-on		-	-		
Specification/ Function	Combining it with two single Magnetic Contactors configures the reversing type. ML11 is the electrical interlock 2b contact built-in type.		When used in combination with the thermal relay, screw mounting and mounting on the IEC35mm rail are possible.	Conductor unit used for reversible connection *6 conductors/set (Note 2) (Note 3)		
Appearance (Typical example)	UT-ML11		UT-HZ18	UT-SD10		
¢ $\overline{\text { ¢ }}$ Magnetic Starters	ST10~T20	SD-T12~T20		S-T10	S(D)-T12/T20	S(D)-T21/T25
$\stackrel{\text { M }}{\text { ¢ }}$ Magnetic Contactors	-	-	-	-	-	-
$\begin{array}{l\|l} \hline \frac{.0}{\bar{\circ}} & \text { Contactor Relays } \\ \hline \frac{2}{4} & \text { thermal relay } \\ \hline \end{array}$	-		TH-T18(KP)	-		

Model name	DC/AC interface unit for coil		Main circuit surge absorber unit	
Type	UT-SY21	UT-SY22	UT-SA3320	UT-SA3332
Mounting	Mounting on top		Mounting on head	
Specification/Function	No-contact output (Triac output)	Contact output (Relay output)	C+R delta connection	
Appearance (Typical example)	UT-SY21			
¢ $\overline{\mathrm{O}}$ Magnetic Starters	S-T10~T50		S(D)-T10~T20	S(D) -T21~T32
E Magnetic Contactors	MSO-T10~T50		MSO (D) -T10~T20	MSO (D) -T21~T32
$\begin{array}{l\|l} \text { 은 } & \text { Contactor Relays } \\ \text { 高 } & \text { thermal relay } \\ \hline \end{array}$	-	-	-	-

Note 1: The head on and side on type mounting styles cannot be used simultaneously on the auxiliary contact unit.
Note 2: Power supply side and load side conductors are available, and therefore care should be taken when connecting. Note 3: Use UN-SD18CX when mounting on T32.

UT-AX \square auxiliary contact block
Ratings and specifications

Model name			UT-AX4	UT-AX2	UT-AX11
Mounting method			Front clip-on	Front clip-on	Side clip-on
Number of poles			4	2	2
Contact arrangement			4a	2a	1a1b
			3 a 1 b	1a1b	
			2a2b	2b	
Applicable		AC operated type	S-T10, T12, T20, T21, T25, T32, T35, T50		
		DC operated type	S-DT12, T20, T21, T32, T35, T50		
		AC operated type	SR-T5		
		DC operated type	SRD-T5		
Rated insulation voltage		[V]	690		
Rated impulse withstand voltage		[kV]	6		
Rated frequency		[Hz]	50/60		
Pollution degree			3		
		AC120V	6		
		AC240V	3		
		AC440V	1.5		
		AC550V	1.2		
		AC120V	10		
		AC240V	8		
		AC440V	5		
		AC550V	5		
		DC24V	3		
		DC48V	1.5		
		DC110V	0.6 (2)		
		DC220V	0.3(0.8)		
		DC24V	10		
		DC48V	8		
		DC110V	5(8)		
		DC220V	1 (3)		
	Minimum applicable load level		5V 3mA		20 V 3 mA
	Mechanical durability [ten thousand times]	[ten thousand times]	1,000		
	Electrical durability [ten thousand times]		50		
Switching frequency		[time/hour]	1,800		
Terminal screw size/type			M3.5 cross slot screw with pressure plate		
Applicable electric wire size		[$\phi \mathrm{mm}, \mathrm{mm}^{2}$]	$\phi 1.6 \quad 0.75$ to 2.5		
Applicable crimp lug size			1.25-3.5 to 2-3.5		
Terminal screw tightening torque [$\mathrm{N} \cdot \mathrm{m}$]			0.9 to 1.5		

[^5]
OUT-SA \square Operation Coil Surge Absorber Unit

Types and application

Note: The surge suppression effect for the applied circuit is smaller in the \square (applicable voltage) range than in the \square (recommended voltage) range. Even in the \square (recommended voltage) range, the surge suppression effect may not be enough depending on the characteristics of the connected device. (Check the influence of surge using the actual device in advance.)

Application and selection

Model	Magnetic Contactor	Contactor Relay
UT-SA22	S-T10, T12, T20, T21, T25, T32, T35, T50	
UT-SA13	SD-T12,T20,T21,T32, T35, T50	SR-T5,T9
UT-SA23	SR(D)-T5,T9	
UT-SA25		

Precautions for application

(1) Connect the terminals of surge absorber unit in parallel with the operation coil of the Magnetic Contactor or Contactor Relay.
(2) When used in combination with the surge absorber, the open time of the Magnetic Contactor or Contactor Relay may be 1.5 to 3 times longer.
(3) The surge absorber is designed to suppress the surge from the Magnetic Contactor. The warranty does not cover external surges. Extreme external surges may damage the product.

UT-ML \square Mechanical Interlock Unit
Application

Model	Applicable Magnetic Contactor model
UT-ML11	S-T10, T12, T20
UT-ML20	SD-T12, T20
UN-ML21 (Note1)	S-T21, T25, T32, T35, T50, T80 SD-T21, T32, T35, T50, T80
UN-ML80	S-T100, SD-T100

Note 1: Use UN-ML21 of the MS-N Series as the mechanical interlock unit for S-T21 to T32.

Specifications

Model	UT-ML11
Rated insulation voltage	690 V
Rated impulse withstand voltage	6 kV
Rated frequency	$50 / 60 \mathrm{~Hz}$
Pollution degree	3
Terminal screw size/type	M3.5 cross slot screw with pressure plate
Applicable electric wire size[$\left.\mathrm{mm}, \mathrm{mm}^{2}\right]$	$\phi 1.6 \quad 0.75$ to 2.5
Applicable crimp lug size	$1.25-3.5$ to $2-3.5$
Terminal screw tightening torque[$\mathrm{N} \cdot \mathrm{m}]$	0.9 to 1.5

Mounting

Hole drilling dimension
(Drilling of holes is not required when mounting the IEC 35 mm rail mountable model is mounted to the IEC 35 mm rail for reversing.)

$* *$	Model	Applicable frame	Dimension[mm]		
		$\mathrm{~B} \pm 0.2$	$\mathrm{C} \pm 0.3$		
UT-ML11	T 10	74	-	60	
	$\mathrm{~S}-\mathrm{T} 12, \mathrm{~T} 20$	89	-	60	
UT-ML20	SD-T12, T20	89	-	60	

Model	Applicable frame	Dimension[mm]		
	$\mathrm{A} \pm 0.2$	$\mathrm{~B} \pm 0.2$	$\mathrm{C} \pm 0.3$	
	$\mathrm{~T} 21, \mathrm{~T} 25$	$54(54)$	$19(19)$	$60(56)$
	$\mathrm{T} 35, \mathrm{~T} 50$	65	20	70
UN-ML21	$\mathrm{S}-\mathrm{T} 32$	30	23	60
	$\mathrm{SD}-\mathrm{T} 32$	32	21	67
UN-ML80	$\mathrm{S}-\mathrm{T} 100$	80	57	80
	SD-T100	80	57	80

OUT-HZ18 (BC) Independent mounting unit for thermal relay
Type and applicable model

Model	Mounting	Applicable model
UT-HZ18	Screw mounting	TH-T18(KP)
n	IEC $35 m m$ rail mounting	TH-T18BC(KP)
UT-HZ18BC	UN-RM20	IIEC 35 mm rail mounting

[^6]
UT-SD \square Main Circuit Conductor Kit

Types and Application

Applicable magnetic contactor frame		
T10	UT-SD10	
T12, T20 UT-SD20	The kit contains six conductors per set. Power supply side and load side conductors are available, and therefore care should be taken when connecting.	The kit contains three conductors per set. The conductors can also be connected to the power supply terminal.
Remarks		

UT-SA33 \square Main Circuit Surge Absorber Unit

Types

Model	Mounting method	Internal element specifications	Rated voltage/ frequency	Applicable model
UT-SA3320	Mounting on head	$(0.3 \mu \mathrm{~F}+60 \Omega) \times 3$	$\begin{aligned} & \text { AC240V } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { S-T10, T12, T20 (BC) } \\ & \text { SD-T12, T20 (BC) } \end{aligned}$
UT-SA3332				$\begin{aligned} & \text { S-T21, T25, T32 (BC) } \\ & \text { SD-T21, T32 (BC) } \end{aligned}$
UN-SA33	Independent mounting	$(0.5 \mu \mathrm{~F}+50 \Omega) \times 3$		S-T10(BC) \sim T100
				SD-T12(BC) ~T100

Specifications

Withstand voltage		Insulation resistance	Superimposed pulse conditions (maximum)		Maximum applied voltage	Mechanical resistance (Type mounted on head)
Across terminals	Across terminal and case		Peak value	Pulse width		
600VAC for one minute	2000VAC for one minute	$300 \mathrm{M} \Omega$ or more	2000V	$1 \mu \mathrm{sec}$.	800V	Ten million times

Notes for use

(1) Do not use this unit in a circuit with high frequency elements, such as an inverter circuit.
(2) Do not use this unit on the load side of a device with low contact capacity, such as a relay.

Connection

Internal connection

UT/UN-SY \square DC/AC Interface Unit for Operation Coils

Model

Unit model	Output method UT-SY21	Unit mounting method No-contact output (Triac output)	Additional mounting on top	Applicable magnetic contactor, magnetic relay model
UT-SY21BC	Contact output (Relay output)	S-T10~T50		
UT-SY22	No-contact output (Triac output)	Independent mounting	S-T10~T100	
UT-SY22BC	Contact output (Relay output)		No-contact output (Triac output)	Contact output (Relay output)

Note 1. A coil voltage nominal of $100 \mathrm{VAC}, 100 \mathrm{~V}$ or 200 VAC can be applied for the operation coil.
Specifications

Model			UT-SY21	UT-SY22	UN-SY11	UN-SY31	UN-SY12	UN-SY32
¢ 0 0 0 0 0 1	Rated working voltage		DC24V					
	Tolerable voltage fluctuation		85\% to 110% of rated working voltage					
	Current		15 mA	10 mA	15 mA		10 mA	
	Power consumption		0.4W	0.24W	0.4W		0.24W	
	Minimum operation voltage		18 V					
	Maximum opening voltage		4V	1V			1V	
	Output specifications		No-contact output(Triac output)	Contact output	No-contact output(Triac output)		Contact output	
	Rated working voltage		AC100V \sim AC240V 50/60Hz					
	Output current		0.5 A AC-15					
	Leakage current when open		$5 \mathrm{~mA} / 240 \mathrm{~V}$	None	$5 \mathrm{~mA} / 240 \mathrm{~V}$		None	
	Operating time		1 ms when operating, 0.5 cycle +1 ms or less when open	10 ms or less	1 ms when opera less	.5 cycle +1 ms or open	10 ms or less	
	Switching durability	Mechanical	-	5,000,000 times	-		5,000,000 times	
		Electrical	-	5,000,000 times	-		$\begin{gathered} \hline \text { 1,000,000 times } \\ \text { (Note 1) } \\ \hline \end{gathered}$	1,000,000 times
Working temperature			$-10^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$					
Applicable terminal wire		Wire	$\phi 1.6 \mathrm{~mm}, 1.25 \sim 2 \mathrm{~mm}^{2}$					
		Crimp minal	1.25-3.5, 2-3.5					
		Tightening torque	$0.9 \sim 1.5 \mathrm{~N} \cdot \mathrm{~m}$		$0.9 \sim 1.5 \mathrm{~N} \cdot \mathrm{~m}$			

Note 1: 5,000,000 times when using UN-SY12 and SR-K100 types in combination.
Connection example (Connection diagram)

Overseas Standard

We support your overseas business.

Our standard products comply with the domestic standards as well as various overseas standards and are certified to meet all the standards. (Note1)

Type	Model name	Applicable standard					Safety certification standard
		International	Japan	European countries		China	U.S. \& Canada
		IEC	JIS	EN	Certificate	GB	c (UL) Us
				EC directive		(cc)	
Magnetic Contactors	S(D)-T10 to T100	(0)	(${ }^{\text {(}}$	(${ }^{\text {a }}$	(0)	(0)	(${ }^{\text {a }}$
Thermal Overload Relays	TH-T18KP to T100KP	(0)	(${ }^{\text {(}}$	(${ }^{\text {a }}$	(0)	(0)	(${ }^{\text {a }}$
Open Type Magnetic Starters	MSO(D)-T10KP to T100KP (Note2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Enclosed Magnetic Starters	T10KP to T100KP	\bigcirc	\bigcirc	-	-	-	-
Contactor Relays	SR(D)-T5/T9	(${ }^{\text {a }}$	(${ }^{\text {) }}$	(${ }^{\text {a }}$	(${ }^{\text {a }}$	(${ }^{\text {) }}$	(${ }^{\text {a }}$

[^7]
UL Standards Certified product

■AC Operating Magnetic Contactor (Non-Reversing) T Series

ULIU $_{\text {USt }}$ (File No. E58968)

Model Magnetic contactors		Rated capacity [HP]						Rated energizing current [A]	Remaks
		Single-phase(only nonreversible type)		3-phase					
	Applicable	$110 \sim 120 \mathrm{~V}$	$220 \sim 240 \mathrm{~V}$	200 V	$220 \sim 240 \mathrm{~V}$	$440 \sim 480 \mathrm{~V}$	$550 \sim 600 \mathrm{~V}$		
S-T10(BC)(SA)	\bigcirc	$\frac{1}{2}$	$1 \frac{1}{2}$	3	3	5	5	13	The standard product is certified with $\stackrel{c}{\text { LISTED }}$ us.
S-T12(BC)(SA)	\bigcirc	$\frac{1}{2}$	1霫	3	3	$7 \frac{1}{2}$	$7 \frac{1}{2}$	20	
S-T20(BC)(SA)	\bigcirc	1	2	3	5	$7 \frac{1}{2}$	$7 \frac{1}{2}$	20	
S-T21(BC)(SA)	\bigcirc	1	3	5	5	10	10	30	
S-T25(BC)(SA)	\bigcirc	2	3	$7 \frac{1}{2}$	$7 \frac{1}{2}$	15	15	30	
S-T32(BC)(SA)	\bigcirc	2	5	10	10	20	15	32.5	
S-T35(BC)(SA)	\bigcirc	2	5	10	10	20	20	40	
S-T50(BC)(SA)	\bigcirc	3	$7 \frac{1}{2}$	15	15	30	30	65	
S-T65	\bigcirc	3	10	15	20	40	40	95	
S-T80	\bigcirc	5	10	20	25	50	50	100	
S-T100	\bigcirc	$7 \frac{1}{2}$	15	25	30	60	60	100	

■AC Operating Magnetic Contactor (Reversing) T Series
ULitivo $_{\text {Us }}$ (File No. E58968)

Model		Rated capacity [HP]				Rated energizing current [A]	Remaks
Magnetic contactors							
	Applicable	200 V	$220 \sim 240 \mathrm{~V}$	$440 \sim 480 \mathrm{~V}$	$550 \sim 600 \mathrm{~V}$		
S- 2×110 (BC)(SA)	\bigcirc	3	3	5	5	13	The standard product is certified with ${ }_{\text {© }}^{\text {LUSten }}$ us.
S-2×T12(BC)(SA)	\bigcirc	3	3	$7 \frac{1}{2}$	$7 \frac{1}{2}$	20	
S-2×T20(BC)(SA)	\bigcirc	3	5	$7 \frac{1}{2}$	$7 \frac{1}{2}$	20	
S-2×T21(BC)(SA)	\bigcirc	5	5	10	10	30	
S-2×T25(BC)(SA)	\bigcirc	$7 \frac{1}{2}$	$7 \frac{1}{2}$	15	15	30	
S-2×T32(BC)(SA)	\bigcirc	10	10	20	15	32.5	
S-2×T35(BC)(SA)	\bigcirc	10	10	20	20	40	
S-2×T50(BC)(SA)	\bigcirc	15	15	30	30	65	
S-2×T65	\bigcirc	15	20	40	40	95	
S-2×T80	\bigcirc	20	25	50	50	100	
S-2×T100	\bigcirc	25	30	60	60	100	

■DC Operating Magnetic Contactor (Non-Reversing / Reversing) T Series
${ }_{\text {LSSTED }}^{\text {c }}$ (File No. E58968)

Model				Rated capacity [HP]						Rated energizing current [A]	Remaks
Non-Reversing		Reversing		Single-phase(only nonreversible type)		3-phase					
	Appicale		Apocicable	$110 \sim 120 \mathrm{~V}$	$220 \sim 240 \mathrm{~V}$	200 V	$220 \sim 240 \mathrm{~V}$	$440 \sim 480 \mathrm{~V}$	$550 \sim 600 \mathrm{~V}$		
SD-T12(BC)(SA)	\bigcirc	SD- $2 \times$ T12(BC)(SA)	\bigcirc	$\frac{1}{2}$	$1 \frac{1}{2}$	3	3	$7 \frac{1}{2}$	$7 \frac{1}{2}$	20	The standard product is
SD-T20(BC)(SA)	\bigcirc	SD- $2 \times$ T20(BC)(SA)	\bigcirc	1	2	3	5	$7 \frac{1}{2}$	$7 \frac{1}{2}$	20	
SD-T21(BC)(SA)	\bigcirc	SD-2×T21(BC)(SA)	\bigcirc	1	3	5	5	10	10	30	
SD-T32(BC)(SA)	\bigcirc	SD-2×T32(BC)(SA)	\bigcirc	2	5	10	10	20	15	32.5	
SD-T35(BC)(SA)	\bigcirc	SD-2×T35(BC)(SA)	\bigcirc	2	5	10	10	20	20	40	
SD-T50(BC)(SA)	\bigcirc	SD- $2 \times$ T50(BC)(SA)	\bigcirc	3	$7 \frac{1}{2}$	15	15	30	30	65	
SD-T65	\bigcirc	SD-2×T65	\bigcirc	3	10	15	20	40	40	95	
SD-T80	\bigcirc	SD- $2 \times$ T80	\bigcirc	5	10	20	25	50	50	100	
SD-T100	\bigcirc	SD- $2 \times$ T100	\bigcirc	$7 \frac{1}{2}$	15	25	30	60	60	100	

Note 1: Application $\cdots \bigcirc$: Standard product
Note 1: Application \cdots : Standard product
Note 2: 125A-400A frames with "UL" at the end of the model name are ${ }_{\text {LUStE }}$ us certified for solderless terminal structure.
Note 2: 125A-400A frames with "UL" at the end of the model name are ${ }^{\text {cULTEE }}$ Us certified for solderless terminal structure.

Mechanical Latch Type Magnetic Contactor T Series

Model				Rated capacity [HP]						Rated energizing curent [A]	Remaks
Non-Reversing		Reversing		Single-phase(only	nonreversisibe type)		3-ph	ase			
	Appicable		Anpicale	$110 \sim 120 \mathrm{~V}$	$220 \sim 240 \mathrm{~V}$	200 V	$220 \sim 240 \mathrm{~V}$	$440 \sim 480 \mathrm{~V}$	$550 \sim 600 \mathrm{~V}$		
SL(D)-T21UL(BC)(SA)	i	$\mathrm{SL}(\mathrm{D})-2 \times \mathrm{T} 21 \mathrm{UL}(\mathrm{BC})(\mathrm{SA})$	i	1	3	5	5	10	10	30	The standard product is

Overseas Standard

Thermal Overload Relays T Series
${ }_{\text {citite }}^{\text {us }}$ (File No. E58968)

Model	Applicable	Heater Designation [Adjustment Range (RC Value) (A) of Settling Current]	Auxiliary contact	
TH-T18KP	\bigcirc	$\begin{aligned} & 0.12 \mathrm{~A}(0.1 \sim 0.16), 0.17(0.14 \sim 0.22), 0.24 \mathrm{~A}(0.2 \sim 0.32), 0.35 \mathrm{~A}(0.28 \sim 0.42), \\ & 0.5 \mathrm{~A}(0.4 \sim 0.6), 0.7 \mathrm{~A}(0.55 \sim 0.85), 0.9 \mathrm{~A}(0.7 \sim 1.1), 1.3 \mathrm{~A}(1 \sim 1.6), 1.7 \mathrm{~A}(1.4 \sim 2), \\ & 2.1 \mathrm{~A}(1.7 \sim 2.5), 2.5 \mathrm{~A}(2 \sim 3), 3.6 \mathrm{~A}(2.8 \sim 4.4), 5 \mathrm{~A}(4 \sim 6), 6.6 \mathrm{~A}(5.2 \sim 8), 9 \mathrm{~A}(7 \sim 11) \text {, } \\ & 11 \mathrm{~A}(9 \sim 13), 15 \mathrm{~A}(12 \sim 18)^{*} 1 \end{aligned}$	Rated Code Making Breaking	C600 AC600Vmax 1800VA(15A max) 180VA(1.5A max)
TH-T25KP	\bigcirc	$0.24 \mathrm{~A}(0.2 \sim 0.32), 0.35 \mathrm{~A}(0.28 \sim 0.42), 0.5 \mathrm{~A}(0.4 \sim 0.6), 0.7 \mathrm{~A}(0.55 \sim 0.85)$, $0.9 \mathrm{~A}(0.7 \sim 1.1), 1.3 \mathrm{~A}(1 \sim 1.6), 1.7 \mathrm{~A}(1.4 \sim 2)$, 2.1A(1.7~2.5), 2.5A(2~3), 3.6A(2.8~4.4), 5A(4~6), 6.6A(5.2~8), 9A(7~11), 11A(9~13), 15A(12~18), 22A(18~26)	Rated Code	B600 AC600Vmax
TH-T50KP	\bigcirc	29A(24~34), 35A(30~40), 42A(34~50)		
TH-T65KP	\bigcirc	15A(12~18), 22A(18~26), 29A(24~34), 35A(30~40), 42A(34~50), 54A(43~65)	Making Breaking	3600VA(30A max) 360VA(3A max)
TH-T100KP	\bigcirc	67A(54~80), 82A(65~100)		

*1. The available current rating is 16A or less.

Cor	ctor Re	YS	Series				${ }_{\text {© (ULTED }}^{\text {us }} \text { (File No. E58968) }$
Model				Rated			Remaks
AC operating		DC operating					
c ULLUS	SR-T5(BC)(SA) SR-T5(BC)(SA)	c! (UT) us	SRD-T5(BC)(SA) SRD-T9(BC)(SA)	A600 AC600V max Making 7200 VA Breaking 720 VA	$\begin{aligned} & \text { Q300 } \\ & \text { DC250V } \\ & \max \end{aligned}$	R300 DC250V max Making 69VA Breaking 69VA	The standard product is certified with

Optional Units T Series (File No. E58969)

Model	0
UT-AX2(BC),AX4(BC),AX11(BC)	(1)
UT-ML11(BC),ML20(BC)	0
UT-SA21,SA23,SA25	0

Note1.():Standard Product and Displayed on the Product.
(1):Certified as a contactor component.(mark not displayed on the product)

Applicable wire size, lug size and tightening torque

Model	S-T10/S(D)T12/T20			S(D)-T21	S-T25	S(D)-T21/T25	S-T21/T25	S(D)	-T32
Terminal	Main	Auxiliary	Control	Main		Auxiliary	Control	Main	Control
Screw size	M3.5	M3.5	M3.5	M4		M3.5	M3.5	M4	M3.5
Wire strip length	10 mm	10 mm	9 mm	11.5 mm		11.5 mm	9 mm	11.5 mm	9 mm
Wire size $\left(60 / 75^{\circ} \mathrm{C}\right)$ (copper only) (Sol./Str.)	14-12 AWG	14 AWG	14 AWG	14-10 AWG	14-8 AWG	14 AWG	14 AWG	$\begin{aligned} & \text { 14-10 AWG } \\ & 8 \text { AWG *1 } \end{aligned}$	14 AWG
Recommended Crimp Lug Size (JST Cat No.) *2	$\begin{gathered} 1.25-3.5 \sim 2 \cdot 3.5 \\ 5.5-\mathrm{SB} \end{gathered}$	1.25-3.5~2-3.5	1.25-3.5~2-3.5	1.25-4~5.5-4	$\begin{gathered} 1.25-4 \sim 5.5-4 \\ 8-\mathrm{NK} 4 \end{gathered}$	$\begin{gathered} 1.25-3.5 \sim \\ 2-3.5 \end{gathered}$	$\begin{gathered} 1.25-3.5 \sim \\ 2-3.5 \end{gathered}$	$\begin{gathered} 1.25-4 \sim 5-5.4 \\ 8-N K 4 \end{gathered}$	1.25-3.5~2-3.5
Connection to terminal Max. qty.	2 Wires or 2 Lugs per terminal *3								
Tightening torque	$\begin{gathered} 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	$\begin{array}{r} 151 \\ (1.69 \\ \hline \end{array}$	$\begin{gathered} 0-\mathrm{in} \\ v \cdot \mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 15 \mathrm{lb}-\mathrm{in} \\ (1.69 \mathrm{~N} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \\ \hline \end{gathered}$

*1. When using 8AWG with a 3-phase AC200 to 208 V , use a copper wire with wire temperature rating of $75^{\circ} \mathrm{C}$.
*2. Please use swaging tool which is recommended by JST.
*3. Two conductors of the same size can be connected.

Model	S(D)-T35/T50			S(D)-T65	S(D)-T80	S(D)-T	65/T80		S(D)-T100	
Terminal	Main	Auxiliary	Control	Main		Auxiliary	Control	Main	Auxiliary	Control
Screw size	M5	M3.5	M3.5	M6		M4	M4	M6	M4	M4
Wire strip length	15 mm	11.5 mm	9 mm	-		11 mm	11 mm	-	11 mm	11 mm
Wire size $\left(60 / 75^{\circ} \mathrm{C}\right)$ (copper only) (Sol./Str.)	14-6 AWG * 1	14 AWG	14 AWG	14-2 AWG	14-1 AWG *2	14 AWG	14 AWG	$\begin{array}{\|c} \hline 14-1 / 0 \text { AWG } \\ \hline \end{array}$	14 AWG	14 AWG
Recommended Crimp Lug Size (JST Cat No.)	1.25-5~14-6	1.25-3.5~2-3.5	1.25-3.5~2-3.5	1.25-6~22-6	$\begin{gathered} 1.25-6 \sim 22-6 \\ 38-\mathrm{S} 6 \end{gathered}$	1.25-4~2-4	1.25-4~2-4	$\begin{aligned} & 1.25-6 \sim 22-6 \\ & 38-\mathrm{S}, 60-6 \end{aligned}$	1.25-4~2-4	1.25-4~2-4
Connection to terminal Max. qty.	2 Wires or 2 Lugs per terminal *4									
Tightening torque	$\begin{gathered} 22.5 \mathrm{lb}-\mathrm{in} \\ (2.54 \mathrm{~N} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{array}{r} 39.1 \\ \text { (4.411 } \\ \hline \end{array}$		$\begin{gathered} 15 \mathrm{lb}-\mathrm{in} \\ (1.69 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} 15 \mathrm{lb}-\mathrm{in} \\ (1.69 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} 39.1 \mathrm{lb}-\mathrm{in} \\ (4.41 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} 15 \mathrm{lb}-\mathrm{in} \\ (1.69 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} 15 \mathrm{lb}-\mathrm{in} \\ (1.69 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$

${ }^{*} 1$. When using 6AWG, use a copper wire with wire temperature rating of $75^{\circ} \mathrm{C}$.
*2. When using 1 AWG , use a copper wire with wire temperature rating of $75^{\circ} \mathrm{C}$.
*3. When using $1 / O A W G$, use a copper wire with wire temperature rating of $75^{\circ} \mathrm{C}$.
*4. Two conductors of the same size can be connected.

Model	TH-T	18 KP	TH-T	25KP	TH-T	50KP	TH-T	65KP	TH-T	00KP	SR(D)	5/T9
Terminal	Main	Auxiliary	Auxiliary	Main								
Screw size	M3.5	M3.5	M4	M3.5	M5	M3.5	M6	M4	M6	M4	M3.5	M3.5
Wire strip length	10.5 mm	10.5 mm	10mm	10.5 mm	13.5 mm	10.5 mm	-	11 mm	-	11mm	10mm	9 mm
Wire size $\left(60 / 75^{\circ} \mathrm{C}\right)$ (copper only) (Sol./Str.)	14-12 AWG	14 AWG	14-8 AWG	14 AWG	$\begin{array}{\|c} 14-6 \text { AWG } \\ * 2 \end{array}$	14 AWG	14-3 AWG	14 AWG	$\begin{gathered} \text { 14-1 AWG } \\ * 3 \end{gathered}$	14 AWG	14 AWG	14 AWG
Recommended Crimp Lug Size (JST Cat No.) *4	$\begin{array}{\|c\|} \hline 1.25-3.5 \sim \\ 2-3.5 \\ 5.5-53 \\ \hline \end{array}$	$\begin{array}{\|c} 1.25-3.5 \sim \\ 2-3.5 \end{array}$	$\begin{array}{\|c} 1.25-4 \sim 5.5-4 \\ \text { 8-NK4 } \end{array}$	$\begin{gathered} 1.25-3.5 \sim \\ 2-3.5 \end{gathered}$	1.25-5~14-6	1.25-3.5~2.3.5	2-6~22-6	1.25-4~2-4	2-6~22-6	1.25-4~2-4	$\begin{gathered} 1.25-3.5 \sim \\ 2-3.5 \end{gathered}$	$\begin{gathered} 1.25-3.5 \sim \\ 2-3.5 \end{gathered}$
Connection to terminal Max. qty.	2 Wires or 2 Lugs per terminal *5				2 Wires or 2 Lugs per terminal						2 Wires or 2 Lugs per terminal *5	
Tightening torque	$\begin{array}{\|c\|} \hline 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \\ \hline \end{array}$	$\begin{gathered} 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} 15 \mathrm{lb}-\mathrm{in} \\ (1.69 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{array}{\|c\|} \hline 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \end{array}$	$\begin{gathered} \hline 22.5 \mathrm{lb}-\mathrm{in} \\ (2.54 \mathrm{~N} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} 39.1 \mathrm{lb}-\mathrm{in} \\ (4.41 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} 15 \mathrm{lb}-\mathrm{in} \\ (1.69 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline 39.1 \mathrm{lb}-\mathrm{in} \\ (4.41 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} 15 \mathrm{lb}-\mathrm{in} \\ (1.69 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{array}{r} 10.3 \mathrm{lb}-\mathrm{in} \\ (1.17 \mathrm{~N} \cdot \mathrm{~m}) \\ \hline \end{array}$

*1. The applicable current for the heater nominal 15 A is 16 A or less.
*2. When using 6AWG, use a copper wire with wire temperature rating of $75^{\circ} \mathrm{C}$.
*3. Use a copper wire with wire temperature rating of $75^{\circ} \mathrm{C}$.
*4. Please use swaging tool which is recommended by JST
*5. Two conductors of the same size can be connected.

US Export Control Panel SCCR

1. SCCR

Initials for the Short Circuit Current Rating, it refers to the magnitude of the short-circuit current that the device or equipment can withstand.

2. Short-Circuit Performance of Control Panels and SCCR

(1) Short-Circuit Performance of Control Panels

On the name plate of a control panel, the value that represents the short-circuit performance of the control panel is given along with the manufacturer's name, rated voltage, number of phases, frequency, full load current, etc. When using the control panel, the estimated short-circuit current at the panel entry must be smaller than the short-circuit performance displayed on the name plate.
(2) Control Panel SCCR

Conventionally, the breaking capacity of overcurrent protection devices such as circuit breakers and fuses to be installed on the inlet port has been used as the short circuit performance of control panels (Figure 1 a) reference). However, due to the revision of the NEC (National Electric Code: the US equivalent of electrical equipment standards) in 2005, SCCR is now displayed as the short circuit performance of control panels rather than the breaking capacity of overcurrent protection devices of the inlet port.
Typically, some sort of "coordination" between devices ("protection coordination" when including a protection device) is required when constructing an electrical system by combining several electrical devices. When considering the coordination of the entire control panel and especially during a short circuit, exactly what indicators are appropriate? Can the breaking capacity of the overcurrent protection device on the inlet port explain the short circuit coordination of the control panel? One of the solutions to such questions is SCCR.

3. Method of Determining SCCR

(1) Method of Determining SCCR

The method of determining SCCR is defined in Section 409 of NEC, but SCCR is commonly determined using the UL508A Supplement SB.
(2) UL508A SB

UL508A SB regulates the next steps.

- Determine SCCR for individual power circuit components.
- Correct SCCR for each current-limiting element.
- Determine SCCR for the entire control panel.

Details for each are described below.
(1) Determine SCCR for power circuit components.

Power circuit refers to circuits of motors, heaters, lighting, etc. Power transformers, reactors, CTs and the like are not included.
SCCR of individual components is determined by one of the following methods.

- Values displayed in rating plates, instruction manuals, etc.
- Default values in SB Table 4.1
* For example, Circuit Breaker: 5 kA , Magnetic Starter (for motors with 50 hp or less): 5 kA , etc.
- For load controllers, motor overload relays and combination motor controllers, the values verified in the performance requirements in accordance with the provisions of UL60947-4-1A or UL508, and mentioned in the procedure of the manufacturer
(2) Correction for Transformer Capacity and Secondary Side SCCR

For SCCR of target circuits of the following cases, this is SCCR of devices on the transformer primary side.
a) In cases where the short-circuit current ratings and breaking ratings of all components of the secondary side are larger than the calculated value of the short-circuit current directly below the power transformer secondary side. For impedance, use either what is known or calculate by assuming that the impedance is 2.1%.
b) In cases where the short-circuit current ratings and breaking ratings of all components of the secondary side are larger than the values on the table as specified in UL 508A SB
c) If it does not correspond to a / b above, the smallest SCCR of the transformer secondary side will be SCCR of the transformer primary side.
(3) Correction for Current Limiting Circuit Breaker and Current Limiting Fuse

When the feeder circuit has a current-limiting circuit breaker or current-limiting fuse, SCCR will be one of the following depending on the conditions of the branch circuit.
a) If SCCR of all components of the branch circuit is equal to or greater than the passing current peak value lp of the current-limiting circuit breaker or currentlimiting fuse and SCCR of the branch circuit protection devices is equal to or greater than SCCR of the current-limiting circuit breaker or current-limiting fuse,SCCR of the current-limiting circuit breaker or current-limiting fuse of the feeder circuit will be SCCR of the branch circuit.
b) If SCCR of all components of the branch circuit is equal to or greater than the passing current peak value lp of the current-limiting circuit breaker or currentlimiting fuse and SCCR of the branch circuit protection devices is less than SCCR of the current-limiting circuit breaker or current-limiting fuse, the smallest SCCR of the branch circuit protection device will be SCCR of the branch circuit.
c) In conditions other than a/b above, the smallest SCCR of all components of the branch circuit will be SCCR of the branch circuit.

Short-circuit Current Rating for Magnetic Contactor and Thermal Relay (SCCR)
Short-Circuit Current Rating (SCCR) of Thermal Overload Relays By using with a fuse or circuit breaker that satisfies the rated current and rated breaking current shown in the table below, the short-circuit current rating (SCCR) in the table below can be applied to thermal overload relays.

[^8]| Thermal Overload Relays Model | | Main oiciut volesegeovac maximum | | Main circuit voltage:240VAC maximum | | | | Main circuit voltage:480VAC maximum | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Short Circuit Current Rating (SCCR) | Maximum Rated Current of Fuse (Class K5) | Short Circuit Current Rating (SCCR) | circuit breakers | | | Short Circuit Current Rating (SCCR) | circuit breakers | | |
| | | Maximum Rated | | | Minimum Breaking Current | Recommended Model Name (Note 1) | Maximum Rated | | Minimum Breaking Current | Recommended Mode Name (Note 1) |
| TH-T18KP | 0.12A | | 5 kA | 15A | $\begin{gathered} 10 \mathrm{kA} \\ 1 \\ 25 \mathrm{kA} \end{gathered}$ | 15A | $\begin{gathered} 10 \mathrm{kA} \\ 1 \\ 25 \mathrm{kA} \end{gathered}$ | NF50-SMUNF50-SVFU, NV50-SVFU/NF100-SRU, NV100-SRU | 10kA | 15A | 10kA | NF100-HRU NV100-HRU
 NF125-SVU
 NV125-SVU |
| | 0.17A | | | | | | | | | | | |
| | 0.24 A | | | | | | | | | | | |
| | 0.35A | | | | | | | | | | | |
| | 0.5A | | | | | | | | | | | |
| | 0.7A | | | | | | | | | | | |
| | 0.9A | | | | | | | | | | | |
| | 1.3A | | | | | | | | | | | |
| | 2.1A | | | | | | | | | | | |
| | 2.5A | | | | | | | | | | | |
| | 3.6A | | | | | | | | | | | |
| | 5A | 20A | | | | | | | | | | |
| | 6.6A | 30A | | 30A | | $\begin{gathered} 10 \mathrm{kA} \\ / \\ 35 \mathrm{kA} \end{gathered}$ | 30A | | | 18kA | | |
| | 9A | | | | | | | | | | | |
| | 11A | | | | | | | | | | | |
| | 15A | 40A | | 50A | | | 50A | | | | | |
| TH-T25KP | 0.24 A | 5 kA | | $\begin{gathered} 10 \mathrm{kA} \\ 1 \\ 35 \mathrm{kA} \end{gathered}$ | 15A | $\begin{gathered} 10 \mathrm{kA} \\ / \\ 50 \mathrm{kA} \end{gathered}$ | NF50-SMU
 NF50-SVFU, NV50-SVFU
 NF100-HRU, NV100-HRU
 NF125-SVU, NV125-SVU | 35kA | 15A | 50kA | NF125-HVU NV125-HVU | |
| | 0.35A | | | | | | | | | | | |
| | 0.5A | | | | | | | | | | | |
| | 0.7A | | | | | | | | | | | |
| | 0.9A | | | | | | | | | | | |
| | 1.3A | | | | | | | | | | | |
| | 1.7A | | | | | | | | | | | |
| | 2.1A | | | | | | | | | | | |
| | 2.5A | | | | | | | | | | | |
| | 3.6A | | | | | | | | | | | |
| | 5A | | 20A | | | | | | | | | |
| | 6.6A | | 30A | | 30A | | | | 30A | | | |
| | 9 A | | 40A | | | | | | | | | |
| | 11A | | 50A | | | | | | | | | |
| | 15A | | 70A | | 50A | | | | 50A | | | |
| | 22A | | 100A | | 75A | $\begin{gathered} 14 \mathrm{kA} \\ / \\ 50 \mathrm{kA} \end{gathered}$ | NF100-CVFU, NV100-CVFU NF100-HRU, NV100-HRU NF125-SVU, NV125-SVU | | 75A | | | |
| TH-T50KP | 29A | | 125A | 10kA | 50A | 10kA | NF50-SMU, NF50-SVFU, NV50-SVFU | 18kA | 75A | 18kA | NF100-HRU, NV100-HRU, NF125-SVU, NV125-SVU | |
| | | | | 14 kA | 40A | 14kA | NF50-SVFU, NV50-SVFU | | | | | |
| | | | | 18kA | 75A | 18 kA | NF100-SRU, NV100-SRU, NF100-HRU, NV100-HRU | 35kA | | 50kA | NF125-HVU,
 NV125-HVU | |
| | | | | 25 kA | | 35 kA | | | | | | |
| | | | | 35kA | | 50kA | NF100-HRU, NV100-HRU NF125-SVU, NV125-SVU | | | | | |
| | 35A | 5 kA | 150A | 10kA | 50A | 10kA | NF50-SMU, NF50-SVFU, NV50-SVFU | 18kA | 100A | 18kA | NF100-HRU, NV100-HRU, NF125-SVU, NV125-SVU | |
| | | | | 14kA | 75A | 14kA | NF50-SVFU, NV50-SVFU | | | | | |
| | | | | 18kA | 100A | 18 kA | NF100-SRU, NV100-SRU, NF100-HRU, NV100-HRU | | | 50kA | | |
| | | | | 25kA | | 35 kA | | 35kA | | | NF125-HVU,
 NV125-HVU | |
| | | | | 35kA | | 50kA | NF100-HRU, NV100-HRU NF125-SVU, NV125-SVU | | | | | |
| | 42A | | 200A | 10kA | 50A | 10kA | NF50-SMU, NF50-SVFU, NV50-SVFU | 18kA | | 18kA | NF100-HRU, NV100-HRU, NF125-SVU, NV125-SVU | |
| | | | | 14 kA | 75A | 14kA | NF50-SVFU, NV50-SVFU | | | | | |
| | | | | 18kA | 100A | 18 kA | NF100-SRU, NV100-SRU, NF100-HRU, NV100-HRU | 35kA | | 50kA | NF125-HVU, NV125-HVU | |
| | | | | 25 kA | | 35kA | | | | | | |
| | | | | 35kA | | 50 kA | NF100-HRU, NV100-HRU NF125-SVU, NV125-SVU | | | | | |

[^9]
Type Codes

* For the information on type codes for orders, check the note in Order Procedure.

Enclosed Magnetic Starters

Open type Magnetic Starters

Magnetic Contactors

Thermal Overload Relays

Contactor Relays

Optional Units

Order Procedure

For orders, specify products as shown below. Insert a space where $\boldsymbol{\Delta}$ is present.
If adding multiple two-character codes (such as SA, BC, and KP) after a frame
Enclosed Magnetic Starters
MS-(2x)T type

Standard (AC operated) Magnetic Starters
MSO-(2x)T type

Standard (AC operated) Magnetic Contactors

S-(2x)T types

Contactor Relays

SR-T types

Model name	-	Operation coil designation	-	Contact arrangement
SR-T5		AC200V		3A2B
SR-T5	Δ	AC100V50Hz	\triangle	4A1B
Refer to page 34.		Select coil designation from pages 22 or specify the working operation circuit voltage.		Designate the contact arrangement listed on page 34.

Thermal Overload Relays

OTH-T type

Optional Units

UT-AX \square auxiliary contact block

Model name	-	Contact arrangement
UT-AX4		2A2B
Refer to page 37.		Designate the contact arrangement listed on page 37 for the UT-AX2/AX4. UT-AX11 does not need to be designated as 1A1B is fixed.

UT-SA \square Operation Coil Surge Absorber Unit

Model name	4	Voltage nominal
UT-SA21		AC400V
UT-SA22	\triangle	AC200V
UT-SA25	-	AC48V
Refer to page 38.		Select according to the operation circuit voltage.

OUT-ML \square Mechanical Interlock Unit
Model name
UT-ML11
Refer to page 39.

OUT-SY \square (BC) type DC/AC interface unit for operation coil

OUT-HZ18 (BC), UN-RM20 type Independent mounting unit for thermal relay

Model name
UT-HZ18
UT-RM20
Refer to page 39.

Outline Drawing, Contact Arrangement

Magnetic Starters (enclosed)

Enclosure (case): Steel
Paint color: Munsell 5Y7/1
Protective structure: IP20

Non-reversing Magnetic Starter (enclosed)

MS-T10 type (0.74 kg)
MS-T12 type (0.76kg)

When mounting the MS-T10 to T50 types, leave 100 mm of space below the box.
2. The MS-T10 to T50 types have three rubber bushings enclosed

Note 1) The above figure gives an example of when the main circuit and operating circuit use the same power supply.
The solid line is already wired. The dashed
line and two-dot chain line sections must be
wired.
(Use the wires enclosed with the unit to wire the two-dot chain line sections.)
Note 2) If the power supply is different for the main circuit and operating circuit, do not wire between the dashed line $1 / \mathrm{L} 1$ and OFF button and between the two-dot chain line 3/L2 and
TH95. Wire to the OFF button and TH95 terminal from a different operating circuit power supply.

MS-T21, T25 type (1.12kg)
 the main circuit and operating circuit use the The solid line is already wired. The dashed line and two-dot chain line sections must be wired.
(Use the wires enclosed with the unit to wire the two-dot chain line sections.)
Note 2) If the power supply is different for the main circuit and operating circuit, do not wir between the dashed line $1 / \mathrm{L} 1$ and OFF button and between the two-dot chain line $3 / L 2$ and TH95. Wire to the OFF button and TH95 terminal from a different operating circuit power supply.
*1. When mounting the MS-T10 to T21 types,
leave 100 mm of space below the box
*2. The MS-T10 to T21 types have three
rubber bushings enclosed.

OMS-T35, T50 type (1.8kg)

Note 1) The above figure gives an example of when the main circuit and operating circuit use the same power supply. The solid line is already wired. The dashed line and two-dot chain line sections must be wired. the two-dot chain line sections.)

2×2-ф28 Knockout holes (two each on top and bottom

Note 2) If the power supply is different for the main circuit and operating circuit, do not wire between the dashed line $1 / \mathrm{L} 1$ and OFF button and between the two-dot chain line 3/L2 and TH95. Wire to the OFF button and TH95 power supply.

OMS-T65 to T100 type (1.8kg)

Note 1) The above figure gives an example of when the main circuit and operating circuit use the
same power supply. line and two-dot chain line sections must be Used. the two-dot chain line sections.)
Note 2) If the power supply is different for the main circuit and operating circuit, do not wire between the dashed line $1 / \mathrm{L} 1$ and OFF button and between the two-dot chain line 3/L2 and H95. Wire to the OFF button and TH9 power supply.

Model	Dimensions											Weight (kg)
	A	AA	AB	B	BA	BB	C	CA	M	N	P	
MS-T65/T80	160	120	80	270	220	25	145	45	M5	22-35	M4	2.9/2.9
MS-T100	190	150	100	305	260	25	163	67	M6	22-35	M4	4.0/4.0

OMS-2×T21,T25 type (2.0kg)

Note 1) The above figure gives an example of when the main circuit and operating circuit use the same power supply.
The solid line is already wired. The dashed line and two-dot chain line sections must be wired.
(Use the wires enclosed with the unit to wire the two-dot chain line sections.)
Note 2) If the power supply is differt for the main circuit and operating circuit do not wire
between the dashed line 1/L1 and STOP button and between the two-dot chain line 3/L2 and TH95. Wire to the STOP button and TH95 terminal from a different operating circuit power supply.

MS-2×T35 to T100 type

Outline Drawing, Contact Arrangement

Magnetic Contactors • Starters (AC operated)

Outline Drawing, Contact Arrangement

Magnetic Contactors • Starters (AC operated)

$* 3, * 4$ dimensions: With side mounted auxiliary contact unit (UT-AX11(BC)) $\ldots * 3$ shows dimension for one unit, and * 4 shows dimensions with two units (both sides)

MSO- $2 \times$ T35(BC) MSO-2×T50(BC)

Reversing

[^10]
Outline Drawing, Contact Arrangement

Magnetic Contactors • Starters (AC operated)

*1 dimensions: With head mounted auxiliary contact unit (UT-AX2, UT-AX4)
*2 2 dimensions: : Dimensions from center of IIC 3 .
${ }^{* 2}$ dimensions: Dimensions from center of IEC 35 mm width rail ${ }^{*} 4$ dimensions: With side mounted auxiliary contact unit (UT-AX11) $\ldots * 3$ shows dimension for one unit, and ${ }^{*} 4$ shows dimensions with two units (both sides).

*1 dimensions: With head mounted auxiliary contact unit (UT-AX2, UT-AX4)

MSO-2×T100

Outline Drawing

Outline Drawing, Contact Arrangement

Magnetic Contactors • Starters (AC operated)

1, *2 dimensions: With side mounted auxiliary contact unit (UT-AX11) ... *1 shows dimension for one unit, and *2 shows
dimensions with two units (both sides).

Magnetic Contactor • Starters (DC opertaed)

${ }^{*}{ }^{2}$ dimensions: Dimensions from center of IIEC 35 mm width rail ${ }^{*} 4$ dimensions: With side mounted auxiliary contact unit (UT-AX11(BC)) $\ldots{ }^{*} 3$ shows dimension for one unit,

${ }^{* 1}$ dimensions: With head mounted auxiliary contact unit (UT-AX2(BC), UT-AX4(BC))

[^11]
Outline Drawing, Contact Arrangement

Magnetic Contactor • Starters (DC opertaed)

*1 dimensions: With head mounted auxiliary contact unit (UT-AX2(BC), UT-AX4(BC))
*2 dimensions: Dimensions from center of IICC 35 mm width rail

${ }^{* 1}$ dimensions: With head mounted auxiliary contact unit (UT-AX2(BC), UT-AX4(BC))
${ }^{*} 2$ dimensions: Dimensions from center of IEC 35 mm width rail -4 dimensions: With side mounted auxiliary contact unit (UT-AX11(BC)) ... *3 shows dimension for one unit, and *4 shows dimensions with two units (both sides).

SD-T35(BC)
SD-T50(BC)
non-Reversing

1 dimensions: With head mounted auxiliary contact unit (UT-AX2, UT-AX4)
${ }^{2} 3, * 4$ dimens: Dimensions from center of IEC 35 mm width rail
${ }^{*} 3$, * 4 dimensions: With side mounted auxiliary contact unit (UT-AX11) ... * 3 shows dimension for one unit, and ${ }^{*} 4$ shows dimensions with two units (both sides).

SD- $2 \times$ T35(BC) SD- $2 \times$ T50(BC)

Reversing

"1 dimensions: With head mounted auxiliary contact unit (UT-AX2, UT-AX4
$* 1$ dimensions: With head mounted auxiliary contact unit (UTT-AX2, UT-AX4)
$* 2,3$ dimensions: With side mounted auxiliary contact unit (UT-AX11) $\ldots * 2$ shows dimension for one unit, and $* 3$ shows dimensions with two units (both sides).

Outline Drawing

Outline Drawing, Contact Arrangement

Magnetic Contactor • Starters (DC opertaed)

SD-T65
SD-T80
non-Reversing

1 dimensions: With head mounted auxiliary contact unit (UT-AX2, UT-AX4) \qquad

SD-2×T65
SD- $2 \times$ T80
Reversing

[^12]

SD-T100
non-Reversing

Reversing

Outline Drawing

Outline Drawing, Contact Arrangement

Magnetic Contactor • Starters (DC opertaed)

[^13]Contactor Relays (AC opertaed)

1 dimensions: Dimensions from center of IEC 35 mm width rail

Contactor Relays (DC opertaed)

1 dimensions: Dimensions from center of IEC 35 mm width rail
\qquad

Outline Drawing, Contact Arrangement

Thermal Overload Relays

TH-T18(BC)KP

For combination with the following magnetic contactors

-TH-T18SR

For combination with the following magnetic contactors
TH-T18SR: S-T10,T12, T20 SD-T12, T20
Independent use is possible by combining with the independent mounting unit UT-HZ18

TH-T25(BC)KP

Use the following connection conductor (option) when using in combination with the magnetic contactor
Combination with S-T35/T50(BC), SD-T35/T50(BC), SL(D)-T35/T50(BC): UT-TH50
DIN rail independent mounting possible when used in combination with independent mounting unit UN-RM20

-TH-T25(BC)(KP)SR

Use the following connection conductor (option) when using in combination with the magnetic contactor
Combination with S-T35/T50(BC), SD-T35/T50(BC), SL(D)-T35/T50(BC): UT-TH50
The reversing Magnetic Contactor with wiring streamlining terminal cannot be combined with TH-T25BC(KP)SR.

TH-T50(BC)(KP)

Model name	Contact arrangement
$\left\|\begin{array}{c} \mathrm{TH}-\mathrm{T} 50(\mathrm{FS}) \\ \mathrm{TH}-\mathrm{T} 50 \mathrm{BC}(\mathrm{FS}) \end{array}\right\|$	
$\left\|\begin{array}{c} \text { TH-T50\|FS)KP } \\ \text { TH-T50BC(FSKP } \end{array}\right\|$	

Use as an independent unit is not possible
When combining with the Magnetic Contactor, use the following connection conductor kit (optional).
Combination with S-T35/T50(BC), SD-T35/T50(BC): UT-TH50

Use as an independent unit is not possible.
When combing
Combination with S-T35/T50(BC), SD-T35/T50(BC): UT-TH50
TH-T65(KP)
(hasher and spring washer)
When combining with the Magnetic Contactor, use the following connection conductor kit (optional) Combination with S(D)-N50/N65, SL(D)-N50/N65: BH559N350
Combination with SD-N80/N95: BH569N352
TH-N60 and TH-N60KP can be used either for the Magnetic Starter (MSO) or independent mounting

Model name	Contact arrangement				
TH-T65(FS)		$\underset{4 / \mathrm{T} 2}{3 / L 2}$		98	-4
TH-T65(FS)KP				98	$-\psi_{96}^{95}$

Note: With TH-N60CX, the width is 92 and the depth is 87

*1 applies for TH-N6O(TA)KPSR.
When combining with the Magnetic Contactor, use the following connection conductor kit (optional),
Combination with $\mathrm{S}(\mathrm{D})$-N50/N65, SL(D)-N50/N65: BH559N350
Combination with S-N80/N95, SL(D)-N80/N95: BH569N350
Combination with SD-N80/N95: BH569N352
TH-N60TA(KP)SR cannot be used with independent mounting

Outline Drawing

Outline Drawing, Contact Arrangement

Thermal Overload Relays

Optional Units

UT-ML11

Outline Drawing

Outline Drawing, Contact Arrangement

Optional Units

OUT-SA3320

UT-SA3332

UT-SY21
 OUT-SY22

MEMO
\qquad

[Notes for adopting the product]

Before purchasing and using our products, please confirm the following product warranty.

Period and scope of warranty

-Warranty period
(1) The warranty period for our products shall be one year after purchase or delivery to the designated location. However the maximum warranty period shall be 18 months after production, in consideration that the maximum length of distribution period is to be 6 months after shipping.
(2) This warranty period may not apply in the case where the use environment, use conditions, or the number of open/close operation times specifically impact the lives of products.
Scope of warranty
(1) When any failure occurs during the above warranty period which is clearly our responsibility, we will replace or repair the failed portion of the product free of charge at the location of purchase or delivery.
Note that the "failure" mentioned here shall not include such items as scratches and discoloration which do not affect performance.
(2) In the following cases, even during the warranty period, charged repair services shall be applied.
(1) Failures caused by inappropriate conditions, environment, handling, and uses other than those specified in catalogs, instruction manuals or specifications.
(2) Failures caused by inappropriate installation.
(3) Failures caused by the design of customer's equipment or software.
(4) Failures caused by the customer tampering with our products such as reworks without our authorization.
(5) Failures caused by the customer failing to correctly maintain or replace components such as spare parts, as specified by documents such as instruction manuals.
(6) Failures caused by uses of the product other than ordinarily intended.
(7) Failures caused by force majeure such as fire and abnormal voltage accidents, and natural disasters such as earthquake, wind and flood.
(8) Failures caused by reasons that were unforeseeable by the level of technology at the time of shipment.
(3) The warranty that is mentioned here shall mean warranty of the unit of delivery, and any losses induced by the failures of delivered products shall be excluded from our warranty.

-Failure diagnosis

In principle, primary failure diagnosis shall be conducted by the customer. However this job, if requested by the customer, can be performed by us or our service company with charge. In this case, a service fee shall be charged to the customer in accordance with our price list.

Recommendation for renewal due to life

Our Magnetic Starters and Magnetic Contactors with contacts and mechanical parts have certain wear life in line with the number of switching operations, while our coil wires and electronic parts have aging degradation life influenced by the use environment and use conditions.
Regarding the use of our Magnetic Starters and Magnetic Contactors, we recommend customers to renew the products every 10 years as a rule, provided that the products are used in
line with the number of open/close operations specified by this catalog or the instruction manual.
We also recommend to renew devices other than the Magnetic Starters and Magnetic Contactors described in this catalog every 10 years as a rule.

Exemption from warranty related to opportunity or secondary losses.

Regardless of in or out of warranty period, loss of opportunity and lost earnings at the customer side caused by the failures of our products, any damages caused by special situation regardless of our foreseeability, secondary losses, accident compensation, damages on anything other than our products, compensation to jobs including replacement work, readjustment of field machinery equipment, startup test run, etc. performed by customers, and damages caused by any reasons for which we are not held responsible, shall be outside the scope of our compensation.

Exemption from warranty related to opportunity or secondary losses.

(1) The contents of products shown in this catalog are for your selection of models. When you actually use the product, read the "Instruction Manual" carefully beforehand and use correctly.
Please note that the external view or specifications that should not affect the model selection can change without preannouncement.
(2) When using a product listed in this catalog, you are required to accept that your use should not lead to any serious accident if by any chance the product develops any failures or errors, and, in the event any failure or error occurs, backup or fail-safe functions are in place outside the device by the system.
(3) The products described in this catalog are designed and manufactured as general products to be used for general industrial fields. For this reason, the products described in this catalog should not be used for the applications requiring special quality assurance systems, such as serious public uses as atomic power plants and other power plants owned by power companies, railway applications and government and public office applications.
Note, however, that the products shall be applicable to such uses if the use is limited and the customer agrees not to require specially high quality.
Furthermore, when the customer is investigating application for the uses where serious impact is foreseen to the human body and assets and therefore high reliability for security and control system is required, such as aviation, medical services, railways, combustion and fuel equipment, manned transportation equipment, entertainment facilities and security machines, please contact our representatives and discuss any necessary agreement or specifications.

Supply period of spare goods after production stop

(1) For the discontinuation of production, we will announce in such media as "Sales and Service" paper created by us.

[Notes for security related issues]

-Before performing the installation, wiring works, operation and maintenance/check for the products described in this catalog, make sure to read the "Instruction Manual" or "Notes for Use" attached to the product for correct usage.
With the MS-T Series, the parts such as the contact and coil cannot be replaced so do not modify or disassemble the product. Failure to observe this can lead to faults.
On spite of our continued efforts to enhance the quality and reliability of our product, the product can fail. The products described in this catalog can bring about serious results, such as malfunctions of machinery, short circuit at power supply, and catching fire), by the malfunction caused by vibration, physical shock and improper wiring. Pay special attention to avoid any secondary accidents such as injuries and fire, as the result of failures or malfunctions.
When you find any questions or you need more details after reading this catalog, please contact your dealer or our company.

[For using the products described in this catalog, please observe the following items.]

. Danger

OMake sure to disconnect the power before you perform installation, removal, wiring works, or maintenance/checking. There is a risk of receiving an electric shock or occurrence of a malfunction.
When the product is energized, avoid touching or coming near the product, especially the terminals having electricity. There is a risk of receiving an electric shock or burn injury.

Information of Our FA-related Products

[Related Products]

Low-voltage switch | Mitsubishi Manual Motor Starter MMP-T Series

Now the Magnetic Contactor MS-T Series (DC operated type) can be combined with the Manual Motor Starter (MMP-T Series) that saves space while protecting the motor circuit (overload, open-phase, short-circuit)!

What is the Manual Motor Starter?
The manual motor starter integrates the wiring breaker with the thermal relay functions and can be used on the motor circuit. A sing module provides overload, open-phase and short-circuit protection

Space-saving design helps
MMP-T32
downsize the panel

Examples of space saving

Wire-saving

Wiring work can be reduced by using the connection conductor unit (option) when wiring the manual motor starter and contactor. A conductor unit for connection to the high-sensitivity contactor (SD-Q) is also available. (Type: UT-MQ12)

Example of using UT-MQ12

Ease-of-use

A variety of optional units are available to meet your various needs.

Model name	No.	Type	Explanation
Auxiliary contact (internal)	(1)	UT-MAX	With this unit, the contact operatesin sequence with the unit's ON/OFF in sequence with the unit's ON/OFF state.
		UT-MAXLL (for micro-loads)	
Warning contact (internal)	(2)	UT-MAL	With this unit, the contact operates in sequence with the unit's tripping action (regardless of cause).
		UT-MALLL (for micro-loads)	
Power supply block	(3)	UT-EP3	This unit onnects the power supply circuit's wires.
Bus bar	(4)	UT-2B4	This unit feeds power to two to three units.
		UT-3B4	
		UT-2B5	
		UT-3B5	
Power supply side terminal cover	(5)	UT-CV3	Power supply side terminal cover for UL60947-4-1A, Type E/F.
Short-circuit display unit	(6)	UT-TU	This unit activates and displays in red only when the main unit trips with a short circuit. Required for application with UL60947-4-1A, Type E/F.
Connection conductor unit	(7)	UT-MT20	This unit electrically and mechanically connects and joins the MMP-T32 and Magnetic Contactor.
		UT-MT32	
		UT-MQ12	
		UT-MT20D	
		UT-MT32D	
Mounting base unit	(8)	UT-BT20	
		UT-BT32	
		UT-BT32D	
Reversible connection unit	(9)	UT-RT10	This block mechanically connects two mounting base units.
		UT-RT20	
		UT-RT32	

Revolutionary, next generation controllers building a new era in automation OHigh-speed, high-accuracy multiple CPU control system based on the iQ Platform ONew high-speed system bus and inter-module sync realizes improved productivity and reduced TCO* ©Reducing development costs through intuitive engineering (GX Works3)
©Robust security features (such as security key authentication, IP filter)
Product Specifications

Program capacity	40K steps to 1200K steps
LD instruction speed	0.98 ns
Available modules	I/O, analog, high-speed counter, positioning, simple motion, network module
Control system architecture	Rack-mounted modular based system
Supported networks	Ethernet, CC-Link IE Control Network, CC-Link IE Field Network,

Total Cost of Ownership

Graphic Operation Terminal GOT2000 Series GT27 Model

To the top of HMIs with further user-friendly, satisfactory standard features.

©Comfortable screen operation even if high-load processing (e.g. logging, device data transfer) is running. (Monitoring performance is twice faster than GT16)
©Actual usable space without using a SD card is expanded to 128MB for more flexible screen design. OMulti-touch features, two-point press, and scroll operations for more user-friendliness.
©Outline font and PNG images for clear, beautiful screen display.
Product Specifications
Screen size 15", $12.1^{\prime \prime}, 10.4^{\prime \prime}, 8.4^{\prime \prime}, 5.7^{\prime \prime}$

Resolution XGA, SVGA, VGA
Intensity adjustment
Touch panel type
Built-in interface
Applicable software
Input power supply voltage

32-step adjustment
Analog resistive film
RS-232, RS-422/485, Ethernet, USB, SD card
GT Works3
100 to 240 VAC ($+10 \%,-15 \%$), 24VDC ($+25 \%,-20 \%$)

Mitsubishi General-Purpose AC Servo MELSERVO-J4 Series

Industry-leading level of high performance servo

OIndustry-leading level of basic performance: Speed frequency response (2.5 kHz), 4,000,000 (4,194,304p/rev) encoder
©Advanced one-touch tuning function achieves the one-touch adjustment of advanced vibration suppression control $\mathbb{I I}$, etc.
OEquipped with large capacity drive recorder and machine diagnosis function for easy maintenance.
© 2 -axis and 3 -axis servo amplifiers are available for energy-conservative, space-saving, and low-cost machines.
Product Specifications
Power supply specifications 1-phase/3-phase $200 \mathrm{~V} \mathrm{AC}, 1$-phase 100 V AC, 3-phase 400 V AC, 48 V DC/24V DC
Command interface
Control mode
Speed frequency response
Tuning function
Functional safety

Compatible servo motor

Information of Our FA-related Products

[Related Products]

Inverter

FR-A800 Series

High-functionality, high-performance inverter

ORealize even higher responsiveness during real sensor-less vector control or vector control, and achieve faster operating frequencies.
(O)The latest automatic tuning function supports various induction motors and also sensor-less PM motors. © The standard model is compatible with EU Safety Standards STO (PLd, SIL2). Add options to support higher level safety standards. © Control and monitor inverters via CC-Link/CC-Link IE Field Network (option interface).

Product Specifications

Inverter capacity	200 V class: 0.4 kW to $90 \mathrm{~kW}, 400 \mathrm{~V}$ class: 0.4 kW to 500 kW
Control method	High-carrier frequency PWM control (Select from V/F, advanced magnetic flux vector, real sensorless vector or PM sensorless vector control), vector control (when using options)
Output frequency range	0.2 to 590 Hz (upper limit is 400 Hz when using advanced magnetic flux vector control, real sensorless vector control, vector control or PM sensorless vector control)
Regenerative braking torque (Maximum allowable duty)	200 V class: 0.4 K to 1.5 K (150% at $3 \% \mathrm{ED}$) $2.2 \mathrm{~K} / 3.7 \mathrm{~K}$ (100% at $3 \% \mathrm{ED}$) $5.5 \mathrm{~K} / 7.5 \mathrm{~K}$ (100% at $2 \% \mathrm{ED}$) 11 K to 55 K (20% continuous) 75 K or more (10% continuous), 400 V class: 0.4 K to 7.5 K (100% at $2 \% \mathrm{ED}$) 11 K to 55 K (20% continuous) 75 K or more (10% continuous)

MELFA F Series

High speed, high precision and high reliability industrial robot
OCompact body and slim arm design, allowing operating area to be expanded and load capacity increased. OThe fastest in its class using high performance motors and unique driver control technology. Olmproved flexibility for robot layout design considerations.
© Optimal motor control tuning set automatically based on operating position, posture, and load conditions.

Product Specifications
Degrees of freedom
Vertical:6 Horizontal:4
Installation
Vertical:Floor-mount, ceiling mount, wall mount (Range of motion for J1 is limited)
Horizontal:Floor-mount
Maximum load capacity

Technologies based on long year experience realize more improved performance.
OThe new electronic circuit breakers can display various measurement items.

Olmprovement of breaking performance with new breaking technology "Expanded ISTAC".
©Compliance with global standard for panel and machine export.
OCommoditization of internal accessories for shorter delivery time and stock reduction.
Product Specifications
Applicable standard
Expansion of UL listed product line-up Commoditization of internal accessories Commoditization for AC and DC circuit use Compact size for easy to use Applicable to IEC, GB, UL, CSA, JIS and etc.
New line-up of 480VAC type with high breaking performance for SCCR requirement Reduction of internal accessory types from 3 to 1
Common use of 32/63A frame in both AC and DC circuit
Thermal adjustable and electronic circuit breakers are same size as 250AF fixed type Measuring Display Unit (MDU) breakers MDU breakers measure, display and transmit energy data to realize energy management.

MEMO
\qquad

MEMO

MEMO
\qquad

Magnetic Contactors and Magnetic Starters

Eco Changes is the Mitsubishi Electric Group's environmental statement, and expresses the Group's stance on environmental management. Through a wide range

Mitsubishi Electric Corporation Nagoya Works is a factory certified for ISO14001 (standards for environmental management systems)and ISO9001(standards for quality assurance management systems)

\triangle Safety Warning

To ensure proper use of the products listed in this catalog, please be sure to read the instruction manual prior to use.

[^0]: Note 1 : Even when the single rating (example: 200 V 60 Hz) is specified for an order, the above rating voltage is indicated on the product.
 Note 2 : Even when the single rating (example: 200 V 60 Hz) is specified for an order, the above rating voltage is indicated on the product.

[^1]: Note 1: The ambient temperature compensator is mounted on all types.
 Note 2: © indicates standard equipment.

[^2]: Note 1: Combining UT-HZ18 allows the T18 frame to be used singly (screw mounting or IEC 35 mm rail mounting).
 Combining UN-RM20 allows the T25 frame for single mounting to have the IEC 35 mm rail mounted.

[^3]: Note 1: The value in brackets indicates the current when switching the load with two poles installed in series.
 Note 2: In the optional unit field, O and X indicate mountable and non-mountable, respectively.
 Note 3: Coil consumption are average values in case of applying 220 V 60 Hz to AC200V coil
 Note 4:Coil consumption are average values in case of DC200V coil. The value in brackets indicates average values in case of DC12V and DC24V coil.

[^4]: Note 1: The auxiliary contact blocks cannot be mounted on SR(D)-T9
 Note 2: The Contactor Relay is not usable with front clip-on and side clip-on blocks mounted at the same time.
 Note 3: The contact arrangements in \square are standard combinations.

[^5]: Note 1: It is not possible to mount both the front clip-on and side clip-on units at the same time.
 Note 2: The value in brackets indicates the current when switching the load with two poles installed in series.

[^6]: Note 1: $\square \mathrm{BC}$ is the model with wiring streamlining terminal.

[^7]: Note1: \bigcirc :Compliant or supported with standard parts,(©):Certified with standard parts
 Note2: The Magnetic Starters will be certified under each type name of the Magnetic Contactors and the Thermal Overload Relays on the condition that the Magnetic Contactors and the Thermal Overload Relays are used in combination

[^8]: Note 1: Examples of the recommended low-voltage breakers are given. Use a UL489-listed low-voltage breaker (3-pole part) that satisfies the ratings given above.

[^9]: Note 1: Examples of the recommended low-voltage breakers are given. Use a UL489-listed low-voltage breaker (3-pole part) that satisfies the ratings given above.

[^10]: $* 1$ dimensions: With head mounted auxiliary contact unit (UT-AX2, UT-AX4)
 $* 2,3$ dimensions: With side mounted auxiliary contact unit (UT-AX11) $\ldots{ }^{* 2}$ shows dimension for one unit, and ${ }^{*} 3$ shows dimensions with two units (both sides).
 4 dimensions: Heater nominal 22A or less, ${ }^{} 6$ dimensions: Heater nominal 29A or more

[^11]: *1 dimensions: With head mounted auxiliary contact unit (UT-AX2(BC), UT-AX4(BC))
 *2 dimensions: Dimensions from center of IEC 35 mm width rail
 $* 3, * 4$ dimensions: With side mounted auxiliary contact unit (UT-AX11(BC)) $\ldots * 3$ shows dimension for one unit,
 and *4 shows dimensions with two units (both sides).

[^12]: *1 dimensions: With head mounted auxiliary contact unit (UT-AX2, UT-AX4)

[^13]: *1 dimensions: For heater nominal 67A or 82A

